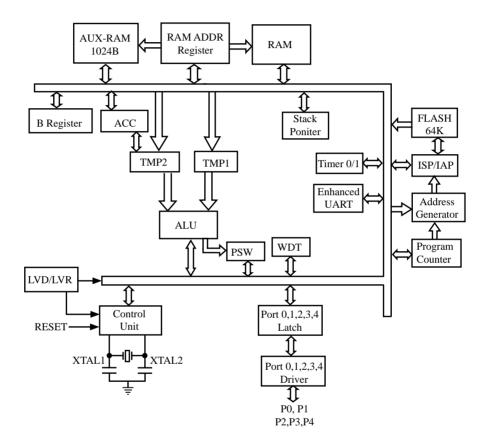
# STC11F/10Fxx series MCU STC11L/10Lxx series MCU Data Sheet

# Content

| Chapter 1. Introduction                                                                                                            | 3  |
|------------------------------------------------------------------------------------------------------------------------------------|----|
| 1.1 Features                                                                                                                       | 3  |
| 1.2 Block diagram                                                                                                                  | 4  |
| 1.3 Pin Configurations                                                                                                             | 5  |
| 1.4 Pin Descriptions                                                                                                               | 6  |
| 1.5 Pin Drawings                                                                                                                   |    |
| Chapter 2. CLOCK, POWER MANAGENMENT, RESET                                                                                         |    |
| 2.1 Clock Network                                                                                                                  |    |
| 2.2 Power Management                                                                                                               |    |
| 2.2.1 Idle Mode                                                                                                                    |    |
| 2.2.2 Slow Down Mode                                                                                                               | 11 |
| 2.2.3 Power Down (PD) Mode                                                                                                         | 12 |
| 2.2.3 Power Down (PD) Mode 2.3 RESET Control 2.3.1 Reset pin 2.3.2 Power-On Reset (POR) 2.3.3 Watch-Dog-Timer 2.3.4 Software RESET | 12 |
| 2.3.1 Reset pin                                                                                                                    | 12 |
| 2.3.2 Power-On Reset (POR)                                                                                                         | 12 |
| 2.3.3 Watch-Dog-Timer                                                                                                              | 12 |
| 2.3.4 Software RESET                                                                                                               | 13 |
| 2.3.5 MAX810 power-on-reset delay                                                                                                  | 13 |
| Chapter 3. Memory Organization                                                                                                     | 14 |
| 3.1 Program Flash Memory                                                                                                           | 14 |
| 3.2 Data Memory.                                                                                                                   | 15 |
| 3.2.1 On-chip Scratch-Pad RAM                                                                                                      | 15 |
| 3.2.2 Auxiliary RAM                                                                                                                | 15 |
| 3.2.3 External RAM                                                                                                                 | 15 |
| 3.2.4 Special Function Register for RAM                                                                                            | 15 |
| Chapter 4. Configurable I/O Ports                                                                                                  | 20 |
| 4.1 I/O Port Configurations                                                                                                        | 20 |
| 4.1.1 Quasi-bidirectional I/O                                                                                                      | 20 |
| 4.1.2 Push-pull Output                                                                                                             | 21 |
| 4.1.3 Input-only Mode                                                                                                              |    |
| 4.1.4 Open-drain Output                                                                                                            |    |
| 4.2 I/O Port Registers                                                                                                             | 22 |
| Chapter 5 Instruction System                                                                                                       | 24 |
| 5.1 Special Function Registers                                                                                                     |    |
| 5.2 Addressing Modes                                                                                                               |    |
| 5.3 Instruction Set Summary                                                                                                        |    |

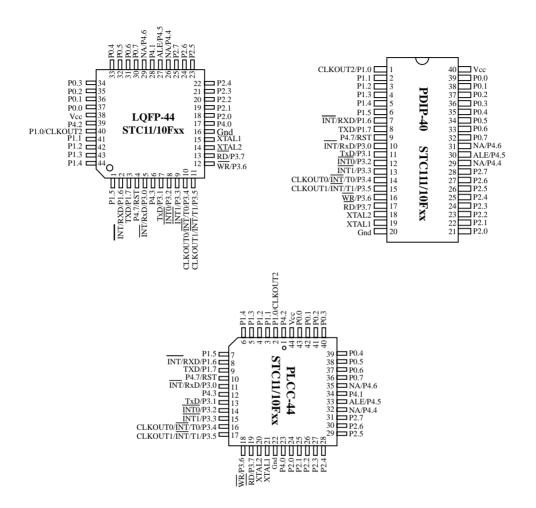
| Chapter 6. Interrupt                                     | 33           |
|----------------------------------------------------------|--------------|
| 6.1 Interrupt Structure                                  | 34           |
| 6.2 Interrupt Register                                   | 35           |
| 6.3 Interrupt Priorities                                 | 37           |
| 6.4 How Interrupts Are Handled                           | 37           |
| 6.5 External Interrupts                                  | 38           |
| 6.6 Response Time                                        | 39           |
| Chapter 7. Timer/Counter 0/1                             | 40           |
| 7.1 Timer/Counter 0 Mode of Operation                    |              |
| 7.2 Timer/Counter 1 Mode of Operation                    | 45           |
| 7.3 Baud Rate Generator and Programmable Clock Output of | on P1.0 . 47 |
| Chapter 8. UART with enhanced function                   | 48           |
| 8.1 UART Mode of Operation                               |              |
| 8.2 Frame Error Detection                                |              |
| 8.3 Multiprocessor Communications                        | 58           |
| 8.4 Automatic Address Recognition                        |              |
| 8.5 Buad Rates                                           | 61           |
| Chapter 9 In System Programming (ISP)/In Application     |              |
| Chapter 10 STC10/11 xx series Selection Table            | 0            |
|                                                          |              |

## **Chapter 1. Introduction**


STC11F/10Fxx series are a single-chip microcontroller based on a high performance 1T architecture 80C51 CPU, which is produced by STC MCU Limited. With the enhanced kernel, STC11F/10Fxx series execute instructions in 1~6 clock cycles (about 6~7 times the rate of a standard 8051 device), and have an fully compatible instruction set with industrial-standard 80C51 series microcontroller. In-System-Programming (ISP) and In-Application-Programming (IAP) support the users to upgrade the program and data in system. ISP allows the user to download new code without removing the microcontroller from the actual end product; IAP means that the device can write non-valatile data in Flash memory while the application program is running. The STC11F/10Fxx series retain all features of the standard 80C51. In addition, the STC11F/10Fxx series have a extra I/O port (P4), a 6-sources, 2-priority-level interrupt structure, on-chip crystal oscillator, and a one-time enabled Watchdog Timer.

#### 1.1 Features

- Enhanced 80C51 Central Processing Unit, 1T per machine cycle, faster 6~7 times than the rate of a standard 8051.
- Operating voltage range: 5.5~4.1V/3.7V or 2.1V/2.4V ~ 3.6V (STC11L/10Lxx series)
- Operating frequency range: 0-35MHz, is equivalent to standard 8051:0~420MHZ
- On-chip 4/8/12/14/16/20/32/40/48/52/56/62K Flash program memory with flexible ISP/IAP capability,
- On-chip 1280/512/256 byte RAM
- · Be capable of addressing up to 64K byte of external RAM
- Dual Data Pointer (DPTR) to speed up data movement
- Code protection for flash memory access
- two 16-bit timer/counter, as the same as Timer0/Timer1 of standard 8051, one BRT(Baud-rate-generator)
- 6 vector-address, 2 level priority interrupt capability
- One enhanced UART with hardware address-recognition, frame-error detection function, and with self baudrate generator.
- One 15 bits Watch-Dog-Timer with 8-bit pre-scaler (one-time-enabled)
- Simple internal RC oscillator
- Three power management modes: idle mode, slow down mode and power-down mode
- Power down mode can be woken-up by INT0/P3.0 pin, INT1/P3.3 pin, T0/P3.4, T1/P3.5, RXD/P3.0 pin (or RXD/P1.6 pin)
- Maximum 40 programmable I/O ports are available
- Programable clock output Function. T0 output the clock on P3.4, T1 output the clock on P3.5, BRT output the clock on P1.0.
- Five package type: LQFP-44, PDIP-40, PLCC-44, QFN-40

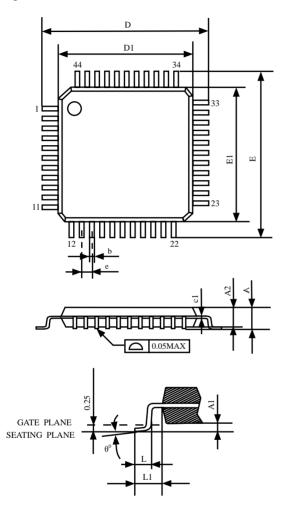

# 1.2 Block diagram

The CPU kernel of STC11/10Fxx series are fully compatible to the standard 8051 microcontroller, maintains all instruction mnemonics and binary compatibility. With some great architecture enhancements, STC11/10Fxx series execute the fastest instructions per clock cycle. Improvement of individual programs depends on the actual instructions used.



STC11/10Fxx Block Diagram

# 1.3 Pin Configurations



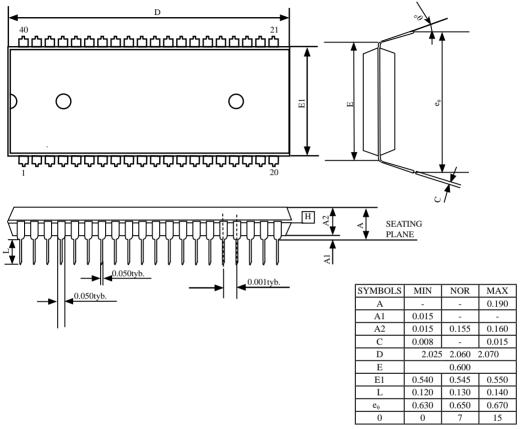

# 1.4 Pin Descriptions

| MNEMONIC     | LQFP44 | PDIP40 | PLCC44 | DESCRIPTION                                                             |
|--------------|--------|--------|--------|-------------------------------------------------------------------------|
| P0.0 ~ P0.7  | 30-37  | 32-39  | 36~43  | Port0 : Port0 is an 8-bit bi-directional I/O port with pull-            |
|              |        |        |        | up resistance. Except being as GPIO, Port 0 is also the                 |
|              |        |        |        | multiplexed low-order address and data bus during accesses              |
|              |        |        |        | to external program and data memory.                                    |
|              |        |        |        |                                                                         |
| P1.0 ~ P1.7  | 40~44  | 1-8    | 2~9    | Port1 : General-purposed I/O with weak pull-up resistance               |
|              | 1~3    |        |        | inside. When 1s are written into Port1, the strong output               |
|              |        |        |        | driving CMOS only turn-on two period and then the weak                  |
|              |        |        |        | pull-up resistance keep the port high.                                  |
| P2.0 ~ P2.7  | 18-25  | 21-28  | 24~31  | Port2: Port2 is an 8-bit bi-directional I/O port with pull-             |
|              |        |        |        | up resistance. Except being as GPIO, Port2 emits the high-              |
|              |        |        |        | order address byte during accessing to external program and             |
|              |        |        |        | data memory.                                                            |
| P3.0 ~ P3.7  | 5      | 10-17  | 11     | Port3 : General-purposed I/O with weak pull-up resistance               |
|              | 7~13   |        | 13~19  | inside. When 1s are written into Port1, the strong output               |
|              |        |        |        | driving CMOS only turn-on two period and then the weak                  |
|              |        |        |        | pull-up resistance keep the port high. Port3 also serves the            |
|              |        |        |        | functions of various special features .                                 |
| P4.0~P4.3    |        |        |        | Port4 : Port4 are extended I/O ports such like Port1.                   |
| P4.0         | 17     |        | 23     |                                                                         |
| P4.1         | 28     |        | 34     |                                                                         |
| P4.2         | 39     |        | 1      |                                                                         |
| P4.3         | 6      |        | 12     |                                                                         |
| RST/P4.7     | 4      | 9      | 10     | RESET: A high on this pin for at least two machine cycles               |
| P4.6         | 29     | 31     | 35     | will reset the device.                                                  |
| P4.0<br>P4.4 | 29     | 29     | 32     |                                                                         |
| ALE/P4.5     | 27     | 30     | 33     | Address I state Freehless It is soonal free sectional data section.     |
| ALE/P4.5     | 21     | 30     | 33     | Address Latch Enable: It is used for external data memory cycles (MOVX) |
| XTAL1        | 15     | 19     | 21     | Crystal 1: Input to the inverting oscillator amplifier.Receives         |
|              |        |        |        | the external oscillator signal when an external oscillator is           |
|              |        |        |        | used.                                                                   |
| XTAL2        | 14     | 18     | 20     | Crystal 2: Output from the inverting amplifier. This pin                |
|              |        |        |        | should be floated when an external oscillator is used.                  |
| VCC          | 38     | 40     | 44     | Power                                                                   |
| Gnd          | 16     | 20     | 22     | Ground                                                                  |

# 1.5 Pin Package Drawings

## **LQFP-44 OUTLINE PACKAGE**

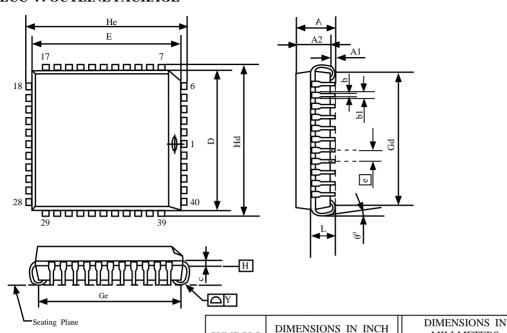



| VARIATIONS     | (ALL DIME | NSIONS SHO    | OWN IN MM |
|----------------|-----------|---------------|-----------|
| SYMBOLS        | MIN.      | NOM           | MAX.      |
| A              | -         | -             | 1.60      |
| A1             | 0.05      | -             | 0.15      |
| A2             | 1.35      | 1.40          | 1.45      |
| c1             | 0.09      | -             | 0.16      |
| D              |           | 12.00         |           |
| D1             |           |               |           |
| Е              |           | 12.00         |           |
| E1             |           | 10.00         |           |
| e              |           | 0.80          |           |
| b(w/o plating) | 0.25      | 0.30          | 0.35      |
| L              | 0.45      | 0.60          | 0.75      |
| L1             |           | 1.00REF       |           |
| $\theta_{0}$   | 00        | $3.5^{\circ}$ | 7°        |

#### NOTES:

1.JEDEC OUTLINE:MS-026 BSB
2.DIMENSIONS D1 AND E1 D0 NOT INCLUDE MOLD PROTRUSION.
ALLOWBLE PROTRUSION IS
0.25mm PER SIDE. D1 AND E1 ARE MAXIMUM PLASTIC BODY SIZE DIMENSIONS IMCLUDING MOLD MISMATCH.

3.DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION.ALLOWBLE DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED THE MAXIMUN b DIMNSION BY MORE THAN 0.08mm.


## PDIP-40 OUTLINE PACKAGE



NOTE:

1.JEDEC OUTLINE :MS-011 AC

## PLCC-44 OUTLINE PACKAGE



| l       | DIMEN | SIONS IN | JINCH  | D1141  | LINDICIN | 7 11 1 |
|---------|-------|----------|--------|--------|----------|--------|
| SYMBOLS | DIMEN | SIONS II | N INCH | MI     | LLMETE   | RS     |
|         | MIN   | NOM      | MAX    | MIN    | NOM      | MAX    |
| A       | 0.165 | -        | 0.180  | 4.191  | -        | 4.572  |
| A1      | 0.020 | -        | -      | 0.508  | -        | -      |
| A2      | 0.147 | -        | 0.158  | 3.734  | -        | 4.013  |
| b1      | 0.026 | 0.028    | 0.032  | 0.660  | 0.711    | 0.813  |
| b       | 0.013 | 0.017    | 0.021  | 0.330  | 0.432    | 0.533  |
| С       | 0.007 | 0.010    | 0.0013 | 0.178  | 0.254    | 0.330  |
| D       | 0.650 | 0.653    | 0.656  | 16.510 | 16.586   | 16.662 |
| Е       | 0.650 | 0.653    | 0.656  | 16.510 | 16.586   | 16.662 |
| e       |       | 0.050BSC | ,      |        | 1.270BSC | •      |
| Gd      | 0.590 | 0.610    | 0.630  | 14.986 | 15.494   | 16.002 |
| Ge      | 0.590 | 0.610    | 0.630  | 14.986 | 15.494   | 16.002 |
| Hd      | 0.685 | 0.690    | 0.695  | 17.399 | 17.526   | 17.653 |

0.695

0.112

0.004

17.399

2.540

17.526

17.653

2.845

0.102

0.690

### NOTE:

1.JEDEC OUTLINE: M0-047 AC

2.DATUM PLANE H IS LACATED AT THE BOTTOM OF THE MOLD PARTING LINE COINCIDENT WITH WHERE THE LEAD EXITS THE BODY.

3.DIMENSIONS E AND D D0 NOT INCLUDE MODE PROTRUSION. ALLOWABLE PROTRUSION IS 10 MIL PRE SIDE.DIMENSIONS E AND D D0 INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE H.

4.DIMENSION 61 DOES NOT INCLUDE DAMBAR PROTRUSION.

STC MCU Limited. 10

0.685

0.100

He

L

Y

# Chapter 2. CLOCK, POWER MANAGENMENT, RESET

#### 2.1 Clock Network

There are two clock sources available for STC11/10Fxx series. One is the clock from crystal oscillation and the other is from internal simple RC oscillation.

#### CLK\_DIV register (Clock Divider)

LSB

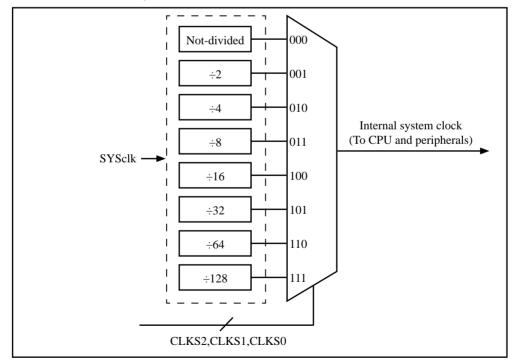
| bit  | В7 | В6 | В5 | B4 | В3 | B2    | B1    | В0    |
|------|----|----|----|----|----|-------|-------|-------|
| name | -  | -  | -  | -  | -  | CLKS2 | CLKS1 | CLKS0 |

## B2-B0 (CLKS2-CLKS0):

000 clock source is not divided (default state)

001 clock source is divided by 2.

010 clock source is divided by 4.


011 clock source is divided by 8.

100 clock source is divided by 16.

101 clock souece is divided by 32.

110 clock source is divided by 64.

111 clock source is divided by 128.



Clock Structure

## 2.2 Power Management

## **PCON** register

LSB

|   | bit  | В7   | В6    | В5   | B4  | В3  | B2  | B1 | В0  |
|---|------|------|-------|------|-----|-----|-----|----|-----|
| n | name | SMOD | SMOD0 | LVDF | POF | GF1 | GF0 | PD | IDL |

SMOD: Double baud rate bit when the UART is used in mode 1,2 or 3.

SMOD0: SM0/FE bit select for SCON.7

LVDF : Low-Voltage Flag. It is set if the voltage is below the LVD reference voltage.

POF : Power-On flag. It is set by power-off-on action and can only cleared by software.

GF1 : General-purposed flag 1
GF0 : General-purposed flag 0
PD : Power-Down bit.
IDL : Idle mode bit.

#### 2.2.1 Idle Mode

An instruction that sets IDL/PCON.0 causes that to be the last instruction executed before going into the idle mode, the internal clock is gated off to the CPU but not to the interrupt, timer, WDT and serial port functions. The CPU status is preserved in its entirety: the Stack Pointer, Program Counter, Program Status Word, Accumulator, and all other registers maintain their data during Idle. The port pins hold the logical states they had at the time Idle was activated. ALE and PSEN hold at logic high levels.

There are two ways to terminate the idle. Activation of any enabled interrupt will cause PCON.0 to be cleared by hardware, terminating the idle mode. The interrupt will be serviced, and following RETI, the next instruction to be executed will be the one following the instruction that put the device into idle.

The flag bits (GFO and GF1) can be used to give art indication if an interrupt occurred during normal operation or during Idle. For example, an instruction that activates Idle can also set one or both flag bits. When Idle is terminated by an interrupt, the interrupt service routine can examine the flag bits.

The other way to wake-up from idle is to pull RESET high to generate internal hardware reset. Since the clock oscillator is still running, the hardware reset needs to be held active for only two system clock cycles (24 system clock) to complete the reset.

#### 2.2.2 Slow Down Mode

A divider is designed to slow down the clock source prior to route to all logic circuit. The operating frequency of internal logic circuit can therefore be slowed down dynamically, and then save the power.

#### 2.2.3 Power Down (PD) Mode

An instruction that sets PCON.1 cause that to be the last instruction executed before going into the PD mode. In the PD mode, the on-chip oscillator is stopped. The contents of on-chip RAM and SFRs are maintained. The power-down mode can be woken-up by RESET pin, external interrupt INTO ~ INT1, RXD pin, T0 pin, T1 pin and PCA input pins-cex0 and cex1. When it is woken-up by RESET, the program will execute from the address 0x0000. Be carefully to keep RESET pin active for at least 10ms in order for a stable clock. If it is woken-up from I/O, the CPU will rework through jumping to related interrupt service routine. Before the CPU rework, the clock is blocked and counted until 32768 in order for denouncing the unstable clock. To use I/O wake-up, interrupt-related registers have to be enabled and programmed accurately before power-down is entered. Pay attention to have at least one "NOP" instruction subsequent to the power-down instruction if I/O wake-up is used.

## 2.3 RESET Control

In STC12C5A60S2, there are 6 sources to generate internal reset. They are RESET (P4.7) pin, Watch-Dog-Timer, software reset, On-chip power-on-reset and On-chip MAX810 POR timing delay.

### 2.3.1 Reset pin

The P4.7 pin, if configured as RESET pin function(default), is input pin for chip reset. A level change of RESET pin have to keep at least 24 cycles plus 10us in order for CPU internal sampling use.

#### 2.3.2 Power-On Reset (POR)

When VCC drops below the detection threshold of POR circuit, all of the logic circuits are reset.

When VCC goes back up again, an internal reset is released automatically after a delay of 32768 clocks. The nominal POR detection threshold is around 1.9V for 3V device and 3.3V for 5V device.

## 2.3.3 Watch-Dog-Timer

An overflow of Watch-Dog-Timer will generate a internal reset.

WDT\_CONTR: Watch-Dog-Timer Control Register

| bit  | B7       | В6 | B5     | B4      | В3       | B2  | B1  | В0  |
|------|----------|----|--------|---------|----------|-----|-----|-----|
| name | WDT_FLAG | -  | EN_WDT | CLR_WDT | IDLE_WDT | PS2 | PS1 | PS0 |

WDT\_FLAG: WDT reset flag.

0: This bit should be cleared by software.

1 : When WDT overflows, this bit is set by hardware to indicate a WDT reset happened.

#### 2.3.4 Software RESET

Writing an "1" to SWRST bit in IAP\_CONTR register will generate a internal reset.

### IAP\_CONTR: ISP/IAP Control Register

| bit  | В7    | В6   | В5    | B4       | В3 | B2  | B1  | В0  |
|------|-------|------|-------|----------|----|-----|-----|-----|
| name | IAPEN | SWBS | SWRST | CMD_FAIL | -  | WT2 | WT1 | WT0 |

IAPEN: ISP/IAP operation enable.

0: Global disable all ISP/IAP program/erase/read function.

1: Enable ISP/IAP program/erase/read function.

SWBS: software boot selection control.

0: Boot from main-memory after reset.

1: Boot from ISP memory after reset.

SWRST: software reset trigger control.

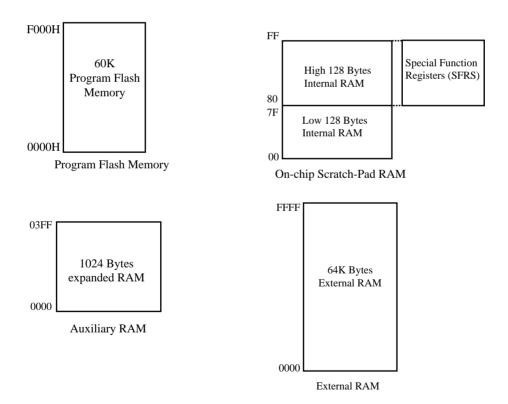
0: No operation

1: Generate software system reset. It will be cleared by hardware automatically.

CMD\_FAIL: Command Fail indication for ISP/IAP operation.

0: The last ISP/IAP command has finished successfully.

1: The last ISP/IAP command fails. It could be caused since the access of flash memory was inhibited.


## 2.3.5 MAX810 power-on-reset delay

There is another on-chip POR delay circuit is integrated on STC11/10Fxx. This circuit is like MAX810 and is controlled by configuring flash Option Register. Very long POR delay time – around 200ms will be generated by this circuit once it is enabled.

# **Chapter 3. Memory Organization**

## 3.1 Program Flash Memory

There is 60K-bytes of flash memory embedded for program and data storage. The design allows users to configure it as like there are three individual partition banks inside. They are called AP region, IAP region and ISP boot region. AP region is the space that user program is resided. IAP(In-Application-Program) region is the nonvolatile data storage space that may be used to save important parameters by AP program. In other words, the IAP capability of STC11/10Fxx series provide the user to read/write the user-defined on-chip data flash region to save the needing in use of external EEPROM device. ISP boot region is the space that allows a specific program we calls "ISP program" is resided. Inside the ISP region, the user can also enable read/write access to a small memory space to store parameters for specific purposes. This small space is called "ISP data flash" and can be enabled via programming NVM option registers. Generally, the purpose of ISP program is to fulfill AP program upgrade without the need to remove the device from system, STC11/10Fxx series hardware catches the configuration information since power-up duration and performs out-of-space hardware-protection depending on pre-determined criteria. The criteria is AP region can be accessed by ISP program only, IAP region can be accessed by ISP program and AP program, and ISP region is prohibited access from AP program and ISP program itself. But if the "ISP data flash is enabled", ISP program can read/write this space. When wrong settings on ISP-IAP SFRs are done, The "out-of-space" happens and STC11/10Fxx series follow the criteria above, ignore the trigger command.



STC MCU Limited

15

Figure 21, The 2052 Date Mark

## 3.2 Data Memory

## 3.2.1 On-chip Scratch-Pad RAM

Just the same as the conventional 8051 micro-controller, there are 256 bytes of SRAM data memory plus 128 bytes of SFR space available on the STC11/10Fxx series. The lower 128 bytes of data memory may be accessed through both direct and indirect addressing. The upper 128 bytes of data memory and the 128 bytes of SFR space share the same address space. The upper 128 bytes of data memory may only be accessed using indirect addressing. The 128 bytes of SFR can only be accessed through direct addressing. The lower 32 bytes of data memory are grouped into 4 banks of 8 registers each. The RSO and RS1 bits in PSW register select which register bank is in use. Instructions using register addressing will only access the currently specified bank.

#### 3.2.2 Auxiliary RAM

There are 1024 bytes of additional data RAM available on STC11/10Fxx series. They may be accessed by the instructions MOVX @Ri or MOVX @DPTR. A control bit – XRAM located in AUXR.1 register is to control access of auxiliary RAM. When set, disable the access of auxiliary RAM. When clear (ERAM=0), this auxiliary RAM is the default target for the address range from 0x0000 to 0x03FF. If ERAM=0 and the target address is over 0x03FF, switches to access external RAM automatically. When ERAM=0, the content in DPH is ignored when the instruction MOVX @Ri is executed.

#### 3.2.3 External RAM

There is 64K-byte addressing space available for STC11/10Fxx series to access external data RAM. Just the same as the design in the conventional 8051, the port – P2, P0, ALE, P3.6 and P3.7 have alterative function for external data RAM access. In addition, a new register BUS\_SPEED (address: 0x8F) is design to stretch the cycle time of MOVX instruction. In BUS\_SPEED register, {ALES1 and ALES0} is to stretch the setup time and hold time with respect to ALE negative edge and {RW2, RW1, RW0} is to stretch the pulse width of /WR(P3.6) and /RD(P3.7). By using BUS\_SPEED to change the instruction cycle time, STC11/10Fxx series can conformed to communicate with both of fast and slow peripheral devices without loss of communication efficiency.

#### 3.2.4 Special Function Register for RAM

For fast data movement, STC11/10Fxx series support two data pointers. They share the same SFR address and are switched by the register bit – DPS.

### **AUXR** register

LSB

| bit  | В7    | В6    | B5        | B4   | В3 | B2     | B1   | В0    |
|------|-------|-------|-----------|------|----|--------|------|-------|
| name | T0x12 | T1x12 | UART_M0x6 | BRTR | -  | BRTx12 | XRAM | S1BRS |

#### T0x12

0: The clock source of Timer 0 is SYSclk/12.
1: The clock source of Timer 0 is SYSclk/1.

#### T1x12

0 : The clock source of Timer 1 is SYSclk/12.
1 : The clock source of Timer 1 is SYSclk/1.

#### UART M0x6

0 : The baud-rate of UART in mode 0 is SYSclk/12.1 : The baud-rate of UART in mode 0 is SYSclk/2.

#### **BRTR**

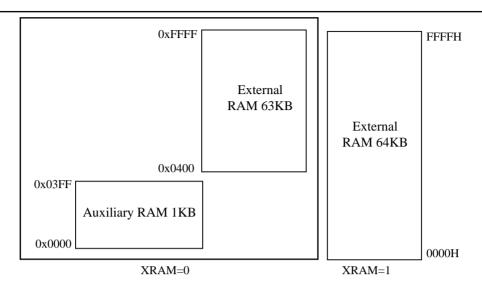
0 : The baud-rate generator of UART is stopped.1 : The baud-rate generator of UART is enabled.

B3: resevered.

#### BRTx12

0 : The baud-rate generator is incremented every 12 system clocks.
1 : The baud-rate generator is incremented every system clock.

#### XRAM


0 : On-chip auxiliary RAM is enabled and located at the address 0x0000 to 0x03FF. For address over 0x03FF, off-chip external RAM becomes the target automatically.

1 : On-chip auxiliary RAM is always disabled.

#### S1BRS

0 : Timer 1 is used for the baud-rate generator.

1 : Timer 1 is released to use in other functions, and enhanced UART is used for the baud-rate generator.



## **AUXR1** register

LSB

| bit  | В7      | B6 | B5 | B4 | В3  | B2 | B1 | В0  |
|------|---------|----|----|----|-----|----|----|-----|
| name | UART_P1 | -  | -  | -  | GF2 | -  | -  | DPS |

GF2: General Flag. It can be used by software.

DPS: DPTR registers select bit.
0: DPTR0 is selected(Default).

1 : The secondary DPTR(DPTR 1) is switched to use.

### BUS\_SPEED register

LSB

| bit  | В7 | В6 | B5    | B4    | В3 | B2   | B1   | В0   |
|------|----|----|-------|-------|----|------|------|------|
| name | -  | -  | ALES1 | ALES0 | -  | RWS2 | RWS1 | RWS0 |

#### {ALES1 and ALES0}:

00: The P0 address setup time and hold time to ALE negative edge is one clock cycle

01: The P0 address setup time and hold time to ALE negative edge is two clock cycles.

10: The P0 address setup time and hold time to ALE negative edge is three clock cycles. (default)

11: The P0 address setup time and hold time to ALE negative edge is four clock cycles.

#### {RWS2,RWS1,RWS0}:

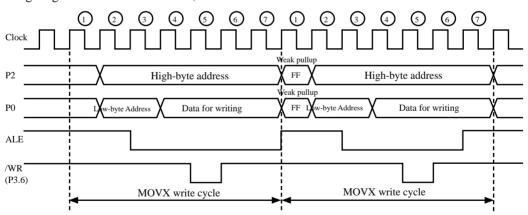
000: The MOVX read/write pulse is 1 clock cycle.

001: The MOVX read/write pulse is 2 clock cycles.

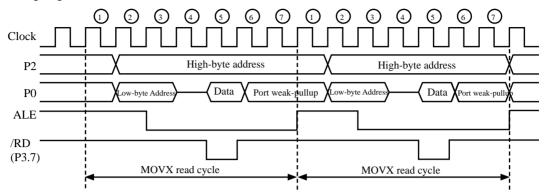
010: The MOVX read/write pulse is 3 clock cycles.

011: The MOVX read/write pulse is 4 clock cycles. (default)

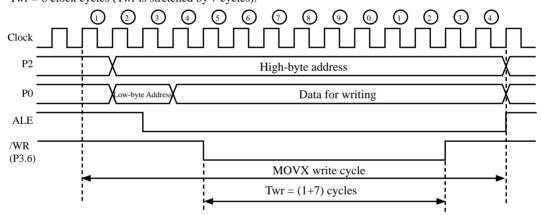
100: The MOVX read/write pulse is 5 clock cycles.


101: The MOVX read/write pulse is 6 clock cycles.

110: The MOVX read/write pulse is 7 clock cycles.

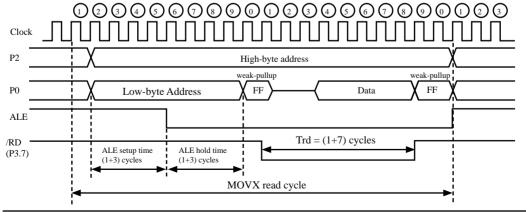

111: The MOVX read/write pulse is 8 clock cycles.

When the target is on-chip auxiliary RAM, the setting on BUS\_SPEED register is discarded by hardware.


## Timing diagram for MOVX @DPTR, A without stretch








Timing diagram for MOVX @DPTR, A with stretch {RWS2,RWS1,RWS0} = 3'b111 Twr = 8 clock cycles (Twr is stretched by 7 cycles).



Timing diagram for MOVX @DPTR, A with stretch  $\{RWS2,RWS1,RWS0\} = 3'b111$  and  $\{ALES1,ALES0\} = 2'b11$ 

The Trd is stretched by 7, so Twr = 8 clock cycles. TALES is stretched by 3, so TALES = 4 clock cycles and TALEH = 4 clock cycles.

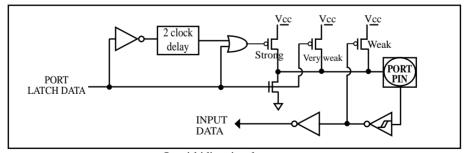


# **Chapter 4. Configurable I/O Ports**

## 4.1 I/O Port Configurations

All port pins on STC11/10Fxx series may be independently configured to one of four modes: quasi-bidirectional (standard 8051 port output), push-pull output, input-only or open-drain output. All port pins default to quasi-bidirectional after reset. Each one has a Schmitt-triggered input for improved input noise rejection.

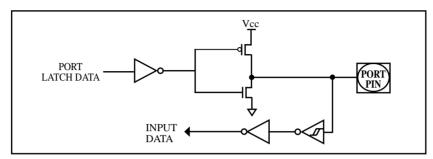
P4.5, and P4.7 are located at the pins-ALE, and RST of conventional 80C51. Pay attention that additional control bits on P4SW register are used to enable the I/O port functions of these pins. Prior to use them as I/O port, the users must set the corresponding bit to enable it.


### 4.1.1 Quasi-bidirectional I/O

Port pins in quasi-bidirectional output mode function similar to the standard 8051 port pins. A quasi-bidirectional port can be used as an input and output without the need to reconfigure the port. This is possible because when the port outputs a logic high, it is weakly driven, allowing an external device to pull the pin low. When the pin outputs low, it is driven strongly and able to sink a large current. There are three pull-up transistors in the quasi-bidirectional output that serve different purposes.

One of these pull-ups, called the "very weak" pull-up, is turned on whenever the port register for the pin contains a logic "1". This very weak pull-up sources a very small current that will pull the pin high if it is left floating.

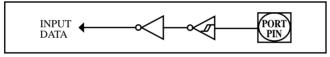
A second pull-up, called the "weak" pull-up, is turned on when the port register for the pin contains a logic "1" and the pin itself is also at a logic "1" level. This pull-up provides the primary source current for a quasi-bidirectional pin that is outputting a 1. If this pin is pulled low by the external device, this weak pull-up turns off, and only the very weak pull-up remains on. In order to pull the pin low under these conditions, the external device has to sink enough current to over-power the weak pull-up and pull the port pin below its input threshold voltage.


The third pull-up is referred to as the "strong" pull-up. This pull-up is used to speed up low-to-high transitions on a quasi-bidirectional port pin when the port register changes from a logic "0" to a logic "1". When this occurs, the strong pull-up turns on for two CPU clocks, quickly pulling the port pin high.



Quasi-bidirectional output

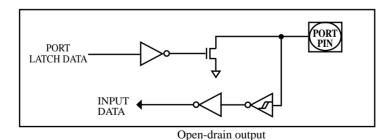
## 4.1.2 Push-pull Output


The push-pull output configuration has the same pull-down structure as both the open-drain and the quasi-bidirectional output modes, but provides a continuous strong pull-up when the port register conatins a logic "1". The push-pull mode may be used when more source current is needed from a port output. In addition, input path of the port pin in this configuration is also the same as quasi-bidirectional mode.



Push-pull output

## 4.1.3 Input-only Mode


The input-only configuration is a Schmitt-triggered input without any pull-up resistors on the pin.



Input-only Mode

## 4.1.4 Open-drain Output

The open-drain output configuration turns off all pull-ups and only drives the pull-down transistor of the port pin when the port register contains a logic "0". To use this configuration in application, a port pin must have an external pull-up, typically tied to VCC. The input path of the port pin in this configuration is the same as quasi-bidirection mode.



STC MCU Limited. 22

# 4.2 I/O Port Registers

All port pins on STC11/10Fxx series may be independently configured by software to one of four types on a bit-by-bit basis, as shown in next Table. Two mode registers for each port select the output mode for each port pin.

Table: Configuration of I/O port mode.

| PxM1.n | PxM0.n | Port Mode                   |  |  |  |
|--------|--------|-----------------------------|--|--|--|
| 0      | 0      | Quasi-bidirectional         |  |  |  |
| 0      | 1      | Push-Pull output            |  |  |  |
| 1      | 0      | Input Only (High-impedance) |  |  |  |
| 1      | 1      | Open-Drain Output           |  |  |  |

## P0M0 register

| bit  | 7      | 6      | 5      | 4      | 3      | 2      | 1      | 0      |
|------|--------|--------|--------|--------|--------|--------|--------|--------|
| name | P0M0.7 | P0M0.6 | P0M0.5 | P0M0.4 | P0M0.3 | P0M0.2 | P0M0.1 | P0M0.0 |

## P0M1 register

| bit  | 7      | 6      | 5      | 4      | 3      | 2      | 1      | 0      |
|------|--------|--------|--------|--------|--------|--------|--------|--------|
| name | P0M1.7 | P0M1.6 | P0M1.5 | P0M1.4 | P0M1.3 | P0M1.2 | P0M1.1 | P0M1.0 |

## P1M0 register

|   | bit  | 7            | 6 | 5      | 4      | 3      | 2      | 1      | 0      |
|---|------|--------------|---|--------|--------|--------|--------|--------|--------|
| ſ | name | P1M0.7 P1M0. |   | P1M0.5 | P1M0.4 | P1M0.3 | P1M0.2 | P1M0.1 | P1M0.0 |

## P1M1 register

| bit  | 7      | 6      | 5      | 4      | 3      | 2      | 1      | 0      |
|------|--------|--------|--------|--------|--------|--------|--------|--------|
| name | P1M1.7 | P1M1.6 | P1M1.5 | P1M1.4 | P1M1.3 | P1M1.2 | P1M1.1 | P1M1.0 |

## P2M0 register

| bit  | 7      | 6      | 5      | 4      | 3      | 2      | 1      | 0      |
|------|--------|--------|--------|--------|--------|--------|--------|--------|
| name | P2M0.7 | P2M0.6 | P2M0.5 | P2M0.4 | P2M0.3 | P2M0.2 | P2M0.1 | P2M0.0 |

## P2M1 register

| bit  | 7      | 6      | 5      | 4      | 3      | 2      | 1      | 0      |
|------|--------|--------|--------|--------|--------|--------|--------|--------|
| name | P2M1.7 | P2M1.6 | P2M1.5 | P2M1.4 | P2M1.3 | P2M1.2 | P2M1.1 | P2M1.0 |

## P3M0 register

| bit  | 7      | 6      | 5      | 4      | 3      | 2      | 1      | 0      |
|------|--------|--------|--------|--------|--------|--------|--------|--------|
| name | P3M0.7 | P3M0.6 | P3M0.5 | P3M0.4 | P3M0.3 | P3M0.2 | P3M0.1 | P3M0.0 |

## P3M1 register

| bit  | 7      | 6      | 5      | 4      | 3      | 2      | 1      | 0      |
|------|--------|--------|--------|--------|--------|--------|--------|--------|
| name | P3M1.7 | P3M1.6 | P3M1.5 | P3M1.4 | P3M1.3 | P3M1.2 | P3M1.1 | P3M1.0 |

## P4M0 register

| bit  | 7      | 6      | 5      | 4      | 3      | 2      | 1      | 0      |
|------|--------|--------|--------|--------|--------|--------|--------|--------|
| name | P4M0.7 | P4M0.6 | P4M0.5 | P4M0.4 | P4M0.3 | P4M0.2 | P4M0.1 | P4M0.0 |

## P4M1 register

| bit  | 7      | 6      | 5      | 4      | 3      | 2      | 1      | 0      |
|------|--------|--------|--------|--------|--------|--------|--------|--------|
| name | P4M1.7 | P4M1.6 | P4M1.5 | P4M1.4 | P4M1.3 | P4M1.2 | P4M1.1 | P4M1.0 |

## P4SW register

| bit  | D7 | D6      | D5       | D4      | D3 | D2 | D1 | D0 |
|------|----|---------|----------|---------|----|----|----|----|
| name | -  | NA_P4.6 | ALE_P4.5 | NA_P4.4 | -  | -  | -  | -  |

NA\_P4.6: Set this bit to enable P4.6. (Pin Location: Convention 80C51's EA).

0: the pin is always kept at weak-high state.

1: the pin functions as P4.6.

ALE\_P4.5 : Set this bit to switch ALE to become P4.5. (Pin Location : Convention 80C51's ALE)

0: the pin functions as ALE output for use in MOVX instruction only.

1: the pin functions as P4.5.

NA\_P4.4: Set this bit to enable P4.4. (Pin Location: Convention 80C51's PSEN)

0: the pin is always kept at weak-high state.

1: the pin functions as P4.4

# **Chapter 5 Instruction System**

# **5.1 Special Function Registers**

|      | 0/8       | 1/9       | 2/A       | 3/B       | 4/C       | 5/D       | 6/E       | 7/F       |       |
|------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-------|
| 0F8H |           |           |           |           |           |           |           |           | 0FFH  |
|      |           |           |           |           |           |           |           |           |       |
| 0F0H | В         |           |           |           |           |           |           |           | 0F7H  |
|      | 0000,0000 |           |           |           |           |           |           |           |       |
| 0E8H |           |           |           |           |           |           |           |           | 0EFH  |
| 0E0H | ACC       |           |           |           |           |           |           |           | 0E7H  |
| OEOH | 0000,0000 |           |           |           |           |           |           |           | UE/H  |
| 0D8H | 0000,0000 |           |           |           |           |           |           |           | 0DFH  |
| 0D0H | PSW       |           |           |           |           |           |           |           | 0D7H  |
| obon | 0000,0000 |           |           |           |           |           |           |           | OD/II |
| 0C8H |           |           |           |           |           |           |           |           | 0CFH  |
| 0C0H | P4        | WDT_CONR  | IAP_DATA  | IAP_ADDRH | IAP_ADDRL | IAP_CMD   | IAP_TRIG  | IAP_CONTR | 0C7H  |
|      | 1111,1111 | xx00,0000 | 1111,1111 | 0000,0000 | 0000,0000 | xxxx,xx00 | xxxx,xxxx | 0000,0000 |       |
| 0B8H | IP        | SADEN     |           | P4SW      |           |           |           |           | 0BFH  |
|      | x0x0,0000 | 0000,0000 |           | x000,xxxx |           |           |           |           |       |
| 0B0H | Р3        | P3M1      | P3M0      | P4M1      | P4M0      |           |           |           | 0B7H  |
|      | 1111,1111 | 0000,0000 | 0000,0000 | 0000,0000 | 0000,0000 |           |           |           |       |
| 0A8H | ΙE        | SADDR     | WKTCL     | WKTCH     |           |           |           |           | 0AFH  |
|      | 00x0,0000 | 0000,0000 | 0000,0000 | 0xxx,0000 |           |           |           |           |       |
| 0A0H | P2        | BUS_SPEED | AUXR1     |           |           |           |           | Don't use | 0A7H  |
|      | 1111,1111 | xx10,x011 | xxxx,0xx0 |           |           |           |           |           |       |
| 098H | SCON      | SBUF      |           |           | BRT       |           |           |           | 09FH  |
|      | 0000,0000 | xxxx,xxxx |           |           | 0000,0000 |           |           |           |       |
| 090H | P1        | P1M1      | P1M0      | P0M1      | P0M0      | P2M1      | P2M0      | CLK_DIV   | 097H  |
|      | 1111,1111 | 0000,0000 | 0000,0000 | 0000,0000 | 0000,0000 | 0000,0000 | 0000,0000 | xxxx,x000 |       |
| 088H | TCON      | TMOD      | TL0       | TL1       | TH0       | TH1       | AUXR      | WAKE_CLKO | 08FH  |
|      | 0000,0000 | 0000,0000 | 0000,0000 | 0000,0000 | 0000,0000 | 0000,0000 | 0000,x000 | x000,x000 |       |
| 080H | P0        | SP        | DPL       | DPH       |           |           |           | PCON      | 087H  |
|      | 1111,1111 | 0000,0111 | 0000,0000 | 0000,0000 |           |           |           | 0011,0000 |       |
|      | 0/8       | 1/9       | 2/A       | 3/B       | 4/C       | 5/D       | 6/E       | 7/F       |       |

| Symbol    | Description                                    | Address | Bit Address and Symbol MSB LSB                                                           | Value after<br>Power-on or<br>Reset |
|-----------|------------------------------------------------|---------|------------------------------------------------------------------------------------------|-------------------------------------|
| P0        | Port 0                                         | 80H     | P0.7   P0.6   P0.5   P0.4   P0.3   P0.2   P0.1   P0.0                                    | 1111 1111B                          |
| SP        | Stack Pointer                                  | 81H     |                                                                                          | 0000 0111B                          |
| DPL DPL   | Data Pointer Low                               | 82H     |                                                                                          | 0000 0000B                          |
| DPTR DPH  | Data Pointer High                              | 83H     |                                                                                          | 0000 0000B                          |
| PCON      | Power Control                                  | 87H     | SMOD SMODO LVDF POF GF1 GF0 PD IDL                                                       | 0011 0000B                          |
| TCON      | Timer Control                                  | 88H     | TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0                                                          | 0000 0000B                          |
| TMOD      | Timer Mode                                     | 89H     | GATE $\mid C/\overline{T} \mid M1 \mid M0 \mid GATE \mid C/\overline{T} \mid M1 \mid M0$ | 0000 0000B                          |
| TL0       | Timer Low 0                                    | 8AH     |                                                                                          | 0000 0000B                          |
| TL1       | Timer Low 1                                    | 8BH     |                                                                                          | 0000 0000B                          |
| TH0       | Timer High 0                                   | 8CH     |                                                                                          | 0000 0000B                          |
| TH1       | Timer High 1                                   | 8DH     |                                                                                          | 0000 0000B                          |
| AUXR      | Auxiliary register                             | 8EH     | T0x12 T1x12 UART_M0x6 BRTR - BRTx12 XRAM S1BRS                                           | 0000 0000B                          |
| WAKE_CLKO | CLK_Output Power down Wake-up control register | 8FH     | - RXD_PIN_IE T1_PIN_IE T0_PIN_IE - BRTCLKO T1CLKO T0CLKO                                 | 0000 0000B                          |
| P1        | Port 1                                         | 90H     | P1.7   P1.6   P1.5   P1.4   P1.3   P1.2   P1.1   P1.0                                    | 1111 1111B                          |
| P1M1      | P1 configuration 1                             | 91H     |                                                                                          | 0000 0000B                          |
| P1M0      | P1 configuration 0                             | 92H     |                                                                                          | 0000 0000B                          |
| P0M1      | P0 configuration 1                             | 93H     |                                                                                          | 0000 0000B                          |
| P0M0      | P0 configuration 0                             | 94H     |                                                                                          | 0000 0000B                          |
| P2M1      | P2 configuration 1                             | 95H     |                                                                                          | 0000 0000B                          |
| P2M0      | P2 configuration 0                             | 96H     |                                                                                          | 0000 0000B                          |
| CLK_DIV   | Clock Divder                                   | 97h     | -   -   -   -   CLKS2   CLKS1   CLKS0                                                    | xxxx x000B                          |
| SCON      | Serial Control                                 | 98H     | SM0/FE SM1 SM2 REN TB8 RB8 TI RI                                                         | 0000 0000B                          |
| SBUF      | Serial Buffer                                  | 99H     |                                                                                          | xxxx xxxxB                          |
| BRT       | dedicated Baud-<br>Rate Timer                  | 9СН     |                                                                                          | 0000 0000B                          |
| P2        | Port 2                                         | A0H     | P2.7   P2.6   P2.5   P2.4   P2.3   P2.2   P2.1   P2.0                                    | 1111 1111B                          |
| BUS_SPEED | Bus-Speed Control                              | A1H     | -   -   ALES1   ALES0   -   RWS2   RWS1   RWS0                                           | xx10 x011B                          |
| AUXR1     | Auxiliary register1                            | A2H     | UART_P1 GF2 DPS                                                                          | 0xxx 0xx0B                          |
| IE        | Interrupt Enable                               | A8H     | EA ELVD - ES ETI EXI ETO EXO                                                             | 0x00 0000B                          |
| SADDR     | Slave Address                                  | А9Н     |                                                                                          | 0000 0000B                          |
| P3        | Port 3                                         | ВОН     | P3.7   P3.6   P3.5   P3.4   P3.3   P3.2   P3.1   P3.0                                    | 1111 1111B                          |
| P3M1      | P3 configuration 1                             | B1H     |                                                                                          | 0000 0000B                          |

| Symbol    | Description                         | Address | Bit Address and Symbol MSB LSB                        | Value after<br>Power-on or<br>Reset |
|-----------|-------------------------------------|---------|-------------------------------------------------------|-------------------------------------|
| P3M0      | P3 configuration 0                  | B2H     |                                                       | 0000 0000B                          |
| P4M1      | P4 configuration 1                  | ВЗН     |                                                       | 0000 0000B                          |
| P4M0      | P4 configuration 0                  | B4H     |                                                       | 0000 0000B                          |
| IP        | Interrupt Priority<br>Low           | В8Н     | - PLVD PADC PS PT1 PX1 PT0 PX0                        | 0000 0000B                          |
| SADEN     | Slave Address Mask                  | В9Н     |                                                       | 0000 0000B                          |
| P4SW      | Port 4 switch                       | ВВН     | - NA_P4.6 ALE_P4.5 NA_P4.4                            | x000 xxxxB                          |
| P4        | Port 4                              | C0H     | P4.7   P4.6   P4.5   P4.4   P4.3   P4.2   P4.1   P4.0 | 1111 1111B                          |
| WDT_CONTR | Watch-Dog-Timer<br>Control Register | C1H     | WDT_FLAG - EN_WDT CLR_WDT IDLE_WDT PS2 PS1 PS0        | xx00 0000B                          |
| IAP_DATA  | ISP/IAP Flash Data<br>Register      | С2Н     |                                                       | 1111 1111B                          |
| IAP_ADDRH | ISP/IAP Flash<br>Address High       | СЗН     |                                                       | 0000 0000В                          |
| IAP_ADDRL | ISP/IAP Flash<br>Address Low        | С4Н     |                                                       | 0000 0000B                          |
| IAP_CMD   | ISP/IAP Flash<br>Command Register   | С5Н     | MS1 MS0                                               | xxxx x000B                          |
| IAP_TRIG  | ISP/IAP Flash<br>Command Trigger    | С6Н     |                                                       | xxxx xxxxB                          |
| IAP_CONTR | ISP/IAP Control<br>Register         | С7Н     | IAPEN SWBS SWRST CMD_FAIL - WT2 WT1 WT0               | 0000 x000B                          |
| PSW       | Program Status<br>Word              | D0H     | CY AC F0 RS1 RS0 OV F1 P                              | 0000 0000B                          |
| В         | B Register                          | F0H     |                                                       | 0000 0000B                          |

#### Accumulator

ACC is the Accumulator register. The mnemonics for accumulator-specific instructions, however, refer to the accumulator simply as A.

## **B-Register**

The B register is used during multiply and divide operations. For other instructions it can be treated as another scratch pad register.

## **Stack Pointer**

The Stack Pointer register is 8 bits wide. It is incremented before data is stored during PUSH and CALL executions. While the stack may reside anywhee in on-chip RAM, the Stack Pointer is initialized to 07H after a reset. This causes the stack to begin at location 08H.

## Program Status Word(PSW)

The program status word(PSW) contains several status bits that reflect the current state of the CPU. The PSW, shown below, resides in the SFR space. It contains the Carry bit, the Auxiliary Carry(for BCD operation), the two register bank select bits, the Overflow flag, a Parity bit and two user-definable status flags.

The Carry bit, other than serving the function of a Carry bit in arithmetic operations, also serves as the "Accumulator" for a number of Boolean operations.

The bits RS0 and RS1 are used to select one of the four register banks shown in the previous page. A number of instructions refer to these RAM locations as R0 through R7.

The Parity bit reflects the number of 1s in the Accumulator. P=1 if the Accumulator contains an odd number of 1s and otherwise P=0.

#### **PSW** register

| bit  | 7  | 6  | 5  | 4   | 3   | 2  | 1  | 0 |
|------|----|----|----|-----|-----|----|----|---|
| name | CY | AC | F0 | RS1 | RS0 | OV | F1 | P |

CY: Carry flag.

AC: Auxilliary Carry Flag.(For BCD operations)

F0: Flag 0.(Available to the user for general purposes)

RS1: Register bank select control bit 1. RS0: Register bank select control bit 0.

OV: Overflow flag.

F1: Flag 1. User-defined flag.

P : Parity flag.

#### **Data Pointer**

The Data Pointer (DPTR) consists of a high byte (DPH) and a low byte (DPL). Its intended function is to hold a 16-bit address. It may be manipulated as a 16-bit register or as two independent 8-bit registers.

## 5.2 Addressing Modes

#### Direct Addressing(DIR)

In direct addressing the operand is specified by an 8-bit address field in the instruction. Only internal data RAM and SFRs can be direct addressed.

#### Indirect Addressing(IND)

In indirect addressing the instruction specified a register which contains the address of the operand. Both internal and external RAM can be indirectly addressed.

The address register for 8-bit addresses can be R0 or R1 of the selected bank, or the Stack Pointer.

The address register for 16-bit addresses can only be the 16-bit data pointer register – DPTR.

## Register Instruction(REG)

The register banks, containing registers R0 through R7, can be accessed by certain instructions which carry a 3-bit register specification within the opcode of the instruction. Instructions that access the registers this way are code efficient because this mode eliminates the need of an extra address byte. When such instruction is executed, one of the eight registers in the selected bank is accessed.

#### **Register-Specific Instruction**

Some instructions are specific to a certain register. For example, some instructions always operate on the accumulator or data pointer, etc. No address byte is needed for such instructions. The opcode itself does it.

## Immediate Constant(IMM)

The value of a constant can follow the opcode in the program memory.

#### **Index Addressing**

Only program memory can be accessed with indexed addressing and it can only be read. This addressing mode is intended for reading look-up tables in program memory. A 16-bit base register(either DPTR or PC) points to the base of the table, and the accumulator is set up with the table entry number. Another type of indexed addressing is used in the conditional jump instruction.

In conditional jump, the destination address is computed as the sum of the base pointer and the accumulator.

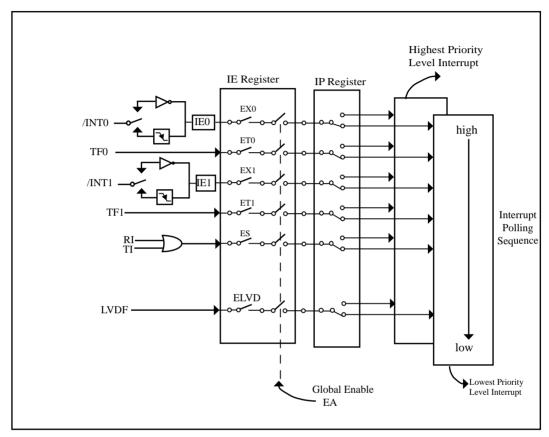
# **5.3 Instruction Set Summary**

| Mnemonic |           | Description                                   |   | Execution cycles of conventional 8051 | Execution cycles of STC11F60XE |
|----------|-----------|-----------------------------------------------|---|---------------------------------------|--------------------------------|
| ARITH    | METIC (   | OPERATIONS                                    |   |                                       |                                |
| ADD      | A, Rn     | Add register to Accumulator                   | 1 | 12                                    | 2                              |
| ADD      | A, direct | Add ditect byte to Accumulator                | 2 | 12                                    | 3                              |
| ADD      | A, @Ri    | Add indirect RAM to Accumulator               | 1 | 12                                    | 3                              |
| ADD      | A, #data  | Add immediate data to Accumulator             | 2 | 12                                    | 2                              |
| ADDC     | A, Rn     | Add register to Accumulator with Carry        | 1 | 12                                    | 2                              |
| ADDC     | A, direct | Add direct byte to Accumulator with Carry     | 2 | 12                                    | 3                              |
| ADDC     | A, @Ri    | Add indirect RAM to Accumulator with Carry    | 1 | 12                                    | 3                              |
| ADDC     | A, #data  | Add immediate data to Acc with Carry          | 2 | 12                                    | 2                              |
| SUBB     | A, Rn     | Subtract Register from Acc wih borrow         | 1 | 12                                    | 2                              |
| SUBB     | A, direct | Subtract direct byte from Acc with borrow     | 2 | 12                                    | 3                              |
| SUBB     | A, @Ri    | Subtract indirect RAM from ACC with borrow    | 1 | 12                                    | 3                              |
| SUBB     | A, #data  | Substract immediate data from ACC with borrow | 2 | 12                                    | 2                              |
| INC      | A         | Increment Accumulator                         | 1 | 12                                    | 2                              |
| INC      | Rn        | Increment register                            | 1 | 12                                    | 3                              |
| INC      | direct    | Increment direct byte                         | 2 | 12                                    | 4                              |
| INC      | @Ri       | Increment direct RAM                          | 1 | 12                                    | 4                              |
| DEC      | A         | Decrement Accumulator                         | 1 | 12                                    | 2                              |
| DEC      | Rn        | Decrement Register                            | 1 | 12                                    | 3                              |
| DEC      | direct    | Decrement direct byte                         | 2 | 12                                    | 4                              |
| DEC      | @Ri       | Decrement indirect RAM                        | 1 | 12                                    | 4                              |
| INC      | DPTR      | Increment Data Pointer                        | 1 | 24                                    | 1                              |
| MUL      | AB        | Multiply A & B                                | 1 | 48                                    | 4                              |
| DIV      | AB        | Divde A by B                                  | 1 | 48                                    | 5                              |
| DA       | A         | Decimal Adjust Accumulator                    | 1 | 12                                    | 4                              |

| N     | Mnemonic     | Description                                | Byte | Execution cycles of conventional 8051 | Execution cycles of STC11F60XE |
|-------|--------------|--------------------------------------------|------|---------------------------------------|--------------------------------|
| LOGIC | AL OPERATIO  | ONS                                        |      |                                       |                                |
| ANL   | A, Rn        | AND Register to Accumulator                | 1    | 12                                    | 2                              |
| ANL   | A, direct    | AND direct btye to Accumulator             | 2    | 12                                    | 3                              |
| ANL   | A, @Ri       | AND indirect RAM to Accumulator            | 1    | 12                                    | 3                              |
| ANL   | A, #data     | AND immediate data to Accumulator          | 2    | 12                                    | 2                              |
| ANL   | direct, A    | AND Accumulator to direct byte             | 2    | 12                                    | 4                              |
| ANL   | direct,#data | AND immediate data to direct byte          | 3    | 24                                    | 4                              |
| ORL   | A, Rn        | OR register to Accumulator                 | 1    | 12                                    | 2                              |
| ORL   | A,direct     | OR direct byte to Accumulator              | 2    | 12                                    | 3                              |
| ORL   | A,@Ri        | OR indirect RAM to Accumulator             | 1    | 12                                    | 3                              |
| ORL   | A, #data     | OR immediate data to Accumulator           | 2    | 12                                    | 2                              |
| ORL   | direct, A    | OR Accumulator to direct byte              | 2    | 12                                    | 4                              |
| ORL   | direct,#data | OR immediate data to direct byte           | 3    | 24                                    | 4                              |
| XRL   | A, Rn        | Exclusive-OR register to Accumulator       | 1    | 12                                    | 2                              |
| XRL   | A, direct    | Exclusive-OR direct byte to Accumulator    | 2    | 12                                    | 3                              |
| XRL   | A, @Ri       | Exclusive-OR indirect RAM to Accumulator   | 1    | 12                                    | 3                              |
| XRL   | A, #data     | Exclusive-OR immediate data to Accumulator | 2    | 12                                    | 2                              |
| XRL   | direct, A    | Exclusive-OR Accumulator to direct byte    | 2    | 12                                    | 4                              |
| XRL   | direct,#data | Exclusive-OR immediate data to direct byte | 3    | 24                                    | 4                              |
| CLR   | A            | Clear Accumulator                          | 1    | 12                                    | 1                              |
| CPL   | A            | Complement Accumulator                     | 1    | 12                                    | 2                              |
| RL    | A            | Rotate Accumulator Left                    | 1    | 12                                    | 1                              |
| RLC   | A            | Rotate Accumulator Left through the Carry  | 1    | 12                                    | 1                              |
| RR    | A            | Rotate Accumulator Right                   | 1    | 12                                    | 1                              |
| RRC   | A            | Rotate Accumulator Right through the Carry | 1    | 12                                    | 1                              |
| SWAP  | A            | Swap nibbles within the Accumulator        | 1    | 12                                    | 1                              |

| N      | Inemonic      | Description                                    | Byte | Execution cycles of conventional 8051 | Execution cycles of STC11F60XE |
|--------|---------------|------------------------------------------------|------|---------------------------------------|--------------------------------|
| DATA 7 | TRANSFER      |                                                |      |                                       |                                |
| MOV    | A, Rn         | Move register to Accumulator                   | 1    | 12                                    | 1                              |
| MOV    | A, direct     | Move direct byte to Accumulator                | 2    | 12                                    | 2                              |
| MOV    | A,@Ri         | Move indirect RAM to                           | 1    | 12                                    | 2                              |
| MOV    | A, #data      | Move immediate data to Accumulator             | 2    | 12                                    | 2                              |
| MOV    | Rn, A         | Move Accumulator to register                   | 1    | 12                                    | 2                              |
| MOV    | Rn, direct    | Move direct byte to register                   | 2    | 24                                    | 4                              |
| MOV    | Rn, #data     | Move immediate data to register                | 2    | 12                                    | 2                              |
| MOV    | direct, A     | Move Accumulator to direct byte                | 2    | 12                                    | 3                              |
| MOV    | direct, Rn    | Move register to direct byte                   | 2    | 24                                    | 3                              |
| MOV    | direct,direct | Move direct byte to direct                     | 3    | 24                                    | 4                              |
| MOV    | direct, @Ri   | Move indirect RAM to direct byte               | 2    | 24                                    | 4                              |
| MOV    | direct,#data  | Move immediate data to direct byte             | 3    | 24                                    | 3                              |
| MOV    | @Ri, A        | Move Accumulator to indirect RAM               | 1    | 12                                    | 3                              |
| MOV    | @Ri, direct   | Move direct byte to indirect RAM               | 2    | 24                                    | 4                              |
| MOV    | @Ri, #data    | Move immediate data to indirect RAM            | 2    | 12                                    | 3                              |
| MOV    | DPTR,#data16  | Move immdiate data to indirect RAM             | 2    | 12                                    | 3                              |
| MOVC   | A,@A+DPTR     | Move Code byte relative to DPTR to Acc         | 1    | 24                                    | 4                              |
| MOVC   | A, @A+PC      | Move Code byte relative to PC to Acc           | 1    | 24                                    | 4                              |
| MOVX   | A,@Ri         | Move External RAM(16-bit addr) to Acc          | 1    | 24                                    | 4                              |
| MOVX   | A,@DPTR       | Move External RAM(16-bit addr) to Acc          | 1    | 24                                    | 3                              |
| MOVX   | @Ri, A        | Move Acc to External RAM(8-bit addr)           | 1    | 24                                    | 3                              |
| MOVX   | @DPTR,A       | Move Acc to External RAM (16-bit addr)         | 1    | 24                                    | 3                              |
| PUSH   | direct        | Push direct byte onto stack                    | 2    | 24                                    | 4                              |
| POP    | direct        | POP direct byte from stack                     | 2    | 24                                    | 3                              |
| XCH    | A,Rn          | Exchange register with Accumulator             | 1    | 12                                    | 3                              |
| XCH    | A, direct     | Exchange direct byte with Accumulator          | 2    | 12                                    | 4                              |
| XCH    | A, @Ri        | Exchange indirect RAM with Accumulator         | 1    | 12                                    | 4                              |
| XCHD   | A, @Ri        | Exchange low-order Digit indirect RAM with Acc | 1    | 12                                    | 4                              |

| M      | Inemonic      | Description                                         | Byte | Execution cycles of conventional 8051 | Execution cycles of STC11F60XE |
|--------|---------------|-----------------------------------------------------|------|---------------------------------------|--------------------------------|
| BOOLE  | AN VARIABLE   | MANIPULATION                                        |      |                                       |                                |
| CLR    | C             | Clear Carry                                         | 1    | 12                                    | 1                              |
| CLR    | bit           | Clear direct bit                                    | 2    | 12                                    | 4                              |
| SETB   | C             | Set Carry                                           | 1    | 12                                    | 1                              |
| SETB   | bit           | Set direct bit                                      | 2    | 12                                    | 4                              |
| CPL    | C             | Complement Carry                                    | 1    | 12                                    | 1                              |
| CPL    | bit           | Complement direct bit                               | 2    | 12                                    | 4                              |
| ANL    | C, bit        | AND direct bit to Carry                             | 2    | 24                                    | 3                              |
| ANL    | C, /bit       | AND complement of direct bit to Carry               | 2    | 24                                    | 3                              |
| ORL    | C, bit        | OR direct bit to Carry                              | 2    | 24                                    | 3                              |
| ORL    | C, /bit       | OR complement of direct bit to Carry                | 2    | 24                                    | 3                              |
| MOV    | C, bit        | Move direct bit to Carry                            | 2    | 12                                    | 3                              |
| MOV    | bit, C        | Move Carry to direct bit                            | 2    | 24                                    | 4                              |
| JC     | rel           | Jump if Carry is set                                | 2    | 24                                    | 3                              |
| JNC    | rel           | Jump if Carry not set                               | 2    | 24                                    | 3                              |
| JB     | bit, rel      | Jump if direct bit is set                           | 3    | 24                                    | 4                              |
| JNB    | bit,rel       | Jump if direct bit is not set                       | 3    | 24                                    | 4                              |
| JBC    | bit, rel      | Jump if direct bit is set & clear bit               | 3    | 24                                    | 5                              |
| PROGR. | AM BRANCHI    | NG                                                  |      |                                       |                                |
| ACALL  | addr11        | Absolute Subroutine Call                            | 2    | 24                                    | 6                              |
| LCALL  | addr16        | Long Subroutine Call                                | 3    | 24                                    | 6                              |
| RET    |               | Return from Subroutine                              | 1    | 24                                    | 4                              |
| RETI   |               | Return from interrupt                               | 1    | 24                                    | 4                              |
| AJMP   | addr11        | Absolute Jump                                       | 2    | 24                                    | 3                              |
| LJMP   | addr16        | Long Jump                                           | 3    | 24                                    | 4                              |
| SJMP   | rel           | Short Jump (relative addr)                          | 2    | 24                                    | 3                              |
| JMP    | @A+DPTR       | Jump indirect relative to the DPTR                  | 1    | 24                                    | 3                              |
| JZ     | rel           | Jump if Accumulator is Zero                         | 2    | 24                                    | 3                              |
| JNZ    | rel           | Jump if Accumulator is not Zero                     | 2    | 24                                    | 3                              |
| CJNE   | A,direct,rel  | Compare direct byte to Acc and jump if not equal    | 3    | 24                                    | 5                              |
| CJNE   | A,#data,rel   | Compare immediate to Acc and Jump if not equal      | 3    | 24                                    | 4                              |
| CJNE   | Rn,#data,rel  | Compare immediate to register and Jump if not equal | 3    | 24                                    | 4                              |
| CJNE   | @Ri,#data,rel | Compare immediate to indirect and jump if not equal | 3    | 24                                    | 5                              |
| DJNZ   | Rn, rel       | Decrement register and jump if not Zero             | 2    | 24                                    | 4                              |
| DJNZ   | direct, rel   | Decrement direct byte and Jump if not Zero          |      | 24                                    | 5                              |
| NOP    |               | No Operation                                        | 1    | 12                                    | 1                              |


# Chapter 6. Interrupt

There are 6 interrupt vector addresses available in STC11/10Fxx series. Associating with each interrupt vector, the interrupt sources can be individually enabled or disabled by setting or clearing a bit in the registers IE. The register also contains a global disable bit(EA), which can be cleared to disable all interrupts at once.

Each interrupt source has two corresponding bits to represent its priority. Higher-priority interrupt will be not interrupted by lower-priority interrupt request. If two interrupt requests of different priority levels are received simultaneously, the request of higher priority is serviced. If interrupt requests of the same priority level are received simultaneously, an internal polling sequence determine which request is serviced. The following table shows the internal polling sequence in the same priority level and the interrupt vector address.

| Interrupt Source                | Vector<br>address | C          | Interrupt Priority setting( IP) | Priority 0<br>(lowest) | Priority<br>1 | Interrupt<br>Request | Interrupt<br>Enable<br>Control Bit |
|---------------------------------|-------------------|------------|---------------------------------|------------------------|---------------|----------------------|------------------------------------|
| /INT0<br>(External interrupt 0) | 0003H             | 0(highest) | PX0                             | 0                      | 1             | IE0                  | EX0/EA                             |
| Timer 0                         | 000BH             | 1          | PT0                             | 0                      | 1             | TF0                  | ET0/EA                             |
| /INT1<br>(External interrupt 1) | 0013H             | 2          | PX1                             | 0                      | 1             | IE1                  | EX1/EA                             |
| Timer1                          | 001BH             | 3          | PT1                             | 0                      | 1             | TF1                  | ET1/EA                             |
| UART<br>(Serial Interface)      | 0023H             | 4          | PS                              | 0                      | 1             | RI+TI                | ES/EA                              |
| NA                              | 002BH             | 5          |                                 |                        | 1             |                      |                                    |
| LVD                             | 0033H             | 6          | PLVD                            | 0                      | 1             | LVDF                 | ELVD/EA                            |

# **6.1 Interrupt Structure**

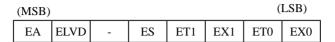


Interrupt system diagram of STC11/10Fxx series

The External Interrupts  $\overline{\text{INT0}}$  and  $\overline{\text{INT1}}$  can each be either level-activated or transition-activated, depending on bits IT0 and IT1 in Register TCON. The flags that actually generate these interrupts are bits IE0 and IE1 in TCON. When an external interrupt is generated, the flag that generated it is cleared by the hardware when the service routine is vectored to if and only if the interrupt was transition –activated, otherwise the external requesting source is what controls the request flag, rather than the on-chip hardware.

The Timer 0 and Timer1 Interrupts are generated by TF0 and TF1, which are set by a rollover in their respective Timer/Counter registers in most cases. When a timer interrupt is generated, the flag that generated it is cleared by the on-chip hardware when the service routine is vectored to.

The Serial Port Interrupt is generated by the logical OR of RI and TI. Neither of these flags is cleared by hardware when the service routine is vectored to. In fact, the service routine will normally have to determine whether it was RI and TI that generated the interrupt, and the bit will have to be cleared by software.

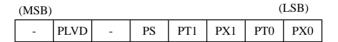

The Low Voltage Detect interrupt is generated by the flag – LVDF in PCON register. It should be cleared by software.

All of the bits that generate interrupts can be set or cleared by software, with the same result as though it had been set or cleared by hardware. In other words, interrupts can be generated or pending interrupts can be canceled in software.

## **6.2 Interrupt Register**

| Symbol    | Description                                          | Address | Bit Address and Symbol MSB LSB                                   | Value after<br>Power-on or<br>Reset |
|-----------|------------------------------------------------------|---------|------------------------------------------------------------------|-------------------------------------|
| IE        | Interrupt Enable                                     | A8H     | EA ELVD - ES ET1 EX1 ET0 EX0                                     | 0x00 0000B                          |
| IP        | Interrupt Priority Low                               | B8H     | - PLVD - PS PT1 PX1 PT0 PX0                                      | 0000 0000B                          |
| TCON      | Timer Control                                        | 88H     | TF1   TR1   TF0   TR0   IE1   IT1   IE0   IT0                    | 0000 0000B                          |
| SCON      | Serial Control                                       | 98H     | SM0/FE SM1 SM2 REN TB8 RB8 TI RI                                 | 0000 0000B                          |
| AUXR      | Auxiliary register                                   | 8EH     | T0x12 T1x12 UART_M0x6 BRTR - BRTx12 EXTRAM SIBRS                 | 0000 0000B                          |
| PCON      | Power Control                                        | 87H     | SMOD SMODO LVDF POF GF1 GF0 PD IDL                               | 0001 0000B                          |
| WAKE_CLKO | CLK_Output Power<br>down Wake-up<br>control register | 8FH     | PCAWAKEUP RXD_PIN_IE TI_PIN_IE TO_PIN_IE - BRTCLKO TICLKO TOCLKO | 0000 0000B                          |

# IE: Interrupt Enable Rsgister




Enable Bit = 1 enables the interrupt .

Enable Bit = 0 disables it.

| Symbol | Position | Function                                                                                                                                                                                |
|--------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EA     | IE.7     | disables all interrupts. if $EA = 0$ ,no interrupt will be acknowledged. if $EA = 1$ , each interrupt source is individually enabled or disabled by setting or clearing its enable bit. |
| ELVD   | IE.6     | Low volatge detection interrupt enable bit.                                                                                                                                             |
| ES     | IE.4     | Serial Port interrupt enable bit                                                                                                                                                        |
| ET1    | IE.3     | Timer 1 interrupt enable bit                                                                                                                                                            |
| EX1    | IE.2     | External interrupt 1 enable bit                                                                                                                                                         |
| ET0    | IE.1     | Timer 0 interrupt enable bit                                                                                                                                                            |
| EX0    | IE.0     | External interrupt 0 enable bit                                                                                                                                                         |
|        |          |                                                                                                                                                                                         |

# **IP: Interrupt Priority Register**



 $\begin{aligned} & \text{Priority bit} = 1 \text{ assigns high priority }. \\ & \text{Priority bit} = 0 \text{ assigns low priority.} \end{aligned}$ 

| Symbol | Position | Function                                  |
|--------|----------|-------------------------------------------|
| PLVD   | IP.6     | Low voltage detection interrupt priority. |
| PS     | IP.4     | Serial Port interrupt priority bit.       |
| PT1    | IP.3     | Timer 1 interrupt priority bit            |
| PX1    | IP.2     | External interrupt 1 priority bit         |
| PT0    | IP.1     | Timer 0 interrupt priority bit            |
| PX0    | IP.0     | External interrupt 0 priority bit         |
|        |          |                                           |

## **6.3 Interrupt Priorities**

Each interrupt source can also be individually programmed to one of two priority levels by setting or clearing a bit in Special Function Register IP. A low-priority interrupt can itself be interrupted by a high-pority interrupt, but not by another low-priority interrupt. A high-priority interrupt can't be interrupted by any other interrupt source.

If two requests of different priority levels are received simultaneously, the request of higher priority level is serviced. If requests of the same priority level are received simultaneously, an internal polling sequence determines which request is serviced. Thus within each priority level there is a second priority structure determined by the polling sequence, as follows:

|    | Source | Priority Within Level |
|----|--------|-----------------------|
| 0. | IE0    | (highest)             |
| 1. | TF0    |                       |
| 2. | IE1    |                       |
| 3. | TF1    |                       |
| 4. | RI +Tl |                       |
| 5. |        |                       |
| 6. | LVDF   |                       |

Note that the "priority within level" structure is only used to resolve simultaneous requests of the same priority level.

# 6.4 How Interrupts Are Handled

External interrupt pins and other interrupt sources are sampled at the rising edge of each instruction *OPcode fetch cycle*. The samples are polled during the next instruction *OPcode fetch cycle*. If one of the flags was in a set condition of the first cycle, the second cycle of polling cycles will find it and the interrupt system will generate an hardware LCALL to the appropriate service routine as long as it is not blocked by any of the following conditions.

### **Block conditions:**

- An interrupt of equal or higher priority level is already in progress.
- The current cycle(polling cycle) is not the final cycle in the execution of the instruction in progress.
- The instruction in progress is RETI or any write to the IE or IP registers.
- The ISP/IAP activity is in progress.

Any of these four conditions will block the generation of the hardware LCALL to the interrupt service routine. Condition 2 ensures that the instruction in progress will be completed before vectoring into any service routine. Condition 3 ensures that if the instruction in progress is RETI or any access to IE or IP, then at least one or more instruction will be executed before any interrupt is vectored to.

The polling cycle is repeated with the last clock cycle of each instruction cycle. Note that if an interrupt flag is active but not being responded to for one of the above conditions, if the flag is not still active when the blocking condition is removed, the denied interrupt will not be serviced. In other words, the fact that the interrupt flag was once active but not being responded to for one of the above conditions, if the flag is not still active when the blocking condition is removed, the denied interrupt will not be serviced. The interrupt flag was once active but not serviced is not kept in memory. Every polling cycle is new.

Note that if an interrupt of higher priority level goes active prior to S5P2 of the machine cycle labeled C3, then in accordance with the above rules it will be vectored to during C5 and C6, without any instruction of the lower priority routine having been executed.

Thus the processor acknowledges an interrupt request by executing a hardware-generated LCALL to the appropriate servicing routine. In some cases it also clears the flag that generated the interrupt, and in other cases it doesn't. It never clears the Serial Port flags. This has to be done in the user's software. It clears an external interrupt flag (IE0 or IE1) only if it was transition-activated. The hardware-generated LCALL pushes the contents of the Program Counter onto the stack (but it does not save the PSW) and reloads the PC with an address that depends on the source of the interrupt being vectored to, as shown be low.

| Source | Vector Address |
|--------|----------------|
| IE0    | 0003H          |
| TF0    | 000BH          |
| IE1    | 0013H          |
| TF1    | 001BH          |
| RI+TI  | 0023H          |
| None   | 002BH          |
| LVDF   | 0033H          |

Execution proceeds from that location until the RETI instruction is encountered. The RETI instruction informs the processor that this interrupt routine is no longer in progress, then pops the top two bytes from the stack and reloads the Program Counter. Execution of the interrupted program continues from where it left off.

Note that a simple RET instruction would also have returned execution to the interrupted program, but it would have left the interrupt control system thinking an interrupt was still in progress.

# **6.5 External Interrupts**

The external sources can be programmed to be level-activated or transition-activated by setting or clearing bit IT1 or IT0 in Register TCON. If ITx = 0, external interrupt x is triggered by a detected low at the  $\overline{INTx}$  pin. If ITx = 1, external interrupt x is edge-triggered. In this mode if successive samples of the  $\overline{INTx}$  pin show a high in one cycle and a low in the next cycle, interrupt request flag IEx in TCON is set. Flag bit IEx then requests the interrupt.

Since the external interrupt pins are sampled once each machine cycle, an input high or low should hold for at least 12 oscillator periods to ensure sampling. If the external interrupt is transition-activated, the external source has to hold the request pin high for at least one machine cycle, and then hold it low for at least one machine cycle to ensure that the transition is seen so that interrupt request flag IEx will be set. IEx will be automatically cleared by the CPU when the service routine is called.

If the external interrupt is level-activated, the external source has to hold the request active until the requested interrupt is actually generated. Then it has to deactivate the request before the interrupt service routine is completed, or else another interrupt will be generated.

## 6.6 Response Time

The INT0 and INT1 levels are inverted and latched into the interrupt flags IE0 and IE1 at rising edge of every system clock cycle.

The Timer 0 and Timer 1 flags, TF0 and TF1, are set after which the timers overflow. The values are then polled by the circuitry at rising edge of the next system clock cycle.

If a request is active and conditions are right for it to be acknowledged, a hardware subroutine call to the requested service routine will be the next instruction to be executed. The call itself takes six system clock cycles. Thus, a minimum of seven complete system clock cycles elapse between activation of an external interrupt request and the beginning of execution of the first instruction of the service routine.

A longer response time would result if the request is blocked by one of the four previously listed conditions. If an interrupt of equal or higher priority level is already in progress, the additional wait time obviously depends on the nature of the other interrupt's service routine. If the instruction in progress is not in its final cycle, the additional wait time cannot be more than 3 cycles, since the longest instructions (LCALL) are only 6 cycles long, and if the instruction in progress is RETI or an access to IE or IP, the additional wait time cannot be more than 5 cycles (a maximum of one more cycle to complete the instruction in progress, plus 6 cycles to complete the next instruction if the instruction is LCALL).

Thus, in a single-interrupt system, the response time is always more than 7 cycles and less than 12 cycles.

# Chapter 7. Timer/Counter 0/1

Timer 0 and timer 1 are like the ones in the conventional 8051, both of them can be individually configured as timers or event counters.

In the "Timer" function, the register is incremented every 12 cycles or every cycle depending on AUXR.7(T0x12) bit and AUXR.6(T1x12). In the default state, it is fully the same as the conventional 8051. In the x12 mode, the count rate equals to the oscillator frequency.

In the "Counter" function, the register is incremented in response to a 1-to-0 transition at its corresponding external input pin, T0 or T1. In this function, the external input is sampled once at the positive edge of every clock cycle. When the samples show a high in one cycle and a low in the next cycle, the count is incremented. The new count value appears in the register during S3P1 of the cycle following the one in which the transition was detected. Since it takes 2 machine cycles(24 oscillator periods) to recognize a 1-to-0 transition, the maximum count rate is 1/24 of the oscillator frequency. There are no restrictions on the duty cycle of the external input signal, but to ensure that a given level is sampled at least once before it changes, it should be held for at least one full machine cycle.

In addition to the "Timer" or "Counter" selection, Timer 0 and Timer 1 have four operating modes from which to select. The "Timer" or "Counter" function is selected by control bits C/T in the Speciai Function Register TMOD. These two Timer/Counter have four operating modes, which are selected by bit-pairs (M1, M0) in TMOD. Modes 0, 1, and 2 are the same for both Timer/Counters. Mode 3 is different. The four operating modes are described in the following text.

| Symbol    | Description                                    | Address | MSB     |          | Bit A    | ddress   | and Sy | mbol   |        | LSB    | Value after<br>Power-on or<br>Reset |
|-----------|------------------------------------------------|---------|---------|----------|----------|----------|--------|--------|--------|--------|-------------------------------------|
| TCON      | Timer Control                                  | 88H     | TF1     | TR1      | TF0      | TR0      | IE1    | IT1    | IE0    | IT0    | 0000 0000B                          |
| TMOD      | Timer Mode                                     | 89H     | GATE    | C/T      | M1       | M0       | GATE   | C/T    | M1     | M0     | 0000 0000B                          |
| TL0       | Timer Low 0                                    | 8AH     |         |          |          |          |        |        |        |        | 0000 0000B                          |
| TL1       | Timer Low 1                                    | 8BH     |         |          |          |          |        |        |        |        | 0000 0000B                          |
| TH0       | Timer High 0                                   | 8CH     |         |          |          |          |        |        |        |        | 0000 0000B                          |
| TH1       | Timer High 1                                   | 8DH     |         |          |          |          |        |        |        |        | 0000 0000B                          |
| AUXR      | Auxiliary register                             | 8EH     | T0x12 T | 1x12 UA  | RT_M0x6  | BRTR     | -      | BRTx12 | XRAM   | S1BRS  | 0000 0000B                          |
| WAKE_CLKO | CLK_Output Power down Wake-up control register | 8FH     | - RXD_  | PIN_IE T | 1_PIN_IE | T0_PIN_I | E - BR | TCLKO  | TICLKO | T0CLKO | 0000 0000B                          |

## **AUXR** register

LSB

|  | В7    | В6    | B5        | B4   | В3 | B2     | B1   | В0    |
|--|-------|-------|-----------|------|----|--------|------|-------|
|  | T0x12 | T1x12 | UART_M0x6 | BRTR | -  | BRTx12 | XRAM | S1BRS |

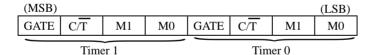
### T0x12

0: The clock source of Timer 0 is SYSclk/12.
1: The clock source of Timer 0 is SYSclk/1.

#### T1x12

0: The clock source of Timer 1 is SYSclk/12.
1: The clock source of Timer 1 is SYSclk/1.

## WAKE\_CLKO:CLK\_Output Power down Wake-up control register


| B7 | B6         | B5        | B4        | В3 | B2      | B1     | В0     |
|----|------------|-----------|-----------|----|---------|--------|--------|
| -  | RXD_PIN_IE | T1_PIN_IE | T0_PIN_IE | -  | BRTCLKO | T1CLKO | T0CLKO |

BRTCLKO: When set, P1.0 is enabled to be the clock output of Baud-Rate Timer (BRT). The clock rate is BRT overflow rate divided by 2.

T1CLKO: When set, P3.5 is enabled to be the clock output of Timer 1. The clock rate is Timer1 overflow rate divided by 2.

TOCLKO: When set, P3.4 is enabled to be the clock output of Timer 0. The clock rate is Timer0 overflow rate divided by 2.

## TMOD register: Timer/Counter Mode Control Register



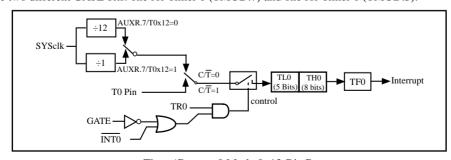
GATE

Gating control when set. Timer/Counter "x" is enabled only while "INTx" pin is high and
"TRx"control pin is set. When cleared Timer "x" is enabled whenever "TRx" control bit is set.

C/T Timer or Counter Selector cleared for Timer operation (input from internal system clock). Set for Counter operation (input from "Tx" input pin).

| M0 | <b>M1</b> | Operating Mode                                                                                                                                         |
|----|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0  | 0         | B-bit Timer/Counter "THx" with "TLx" as 5-bit prescaler.                                                                                               |
| 0  | 1         | 16-bit Timer/Counter"THx"and"TLx"are cascaded;there is no prescaler                                                                                    |
| 1  | 0         | 8-bit auto-reload Timer/Counter "THx" holds a value which is to be reloaded into "TLx" each time it overflows.                                         |
| 1  | 1         | (Timer 0) TL0 is an 8-bit Timer/Counter controlled by the standard Timer 0 control bits TH0 is an 8-bit timer only controlled by Timer 1 control bits. |
| 1  | 1         | (Timer 1) Timer/Counter 1 stopped                                                                                                                      |

| TCON   | TCON register: Timer/Counter Control Register |                   |                       |                          |                          |     |        |                                                                                                                       |                                                                                   |                                                                                         |  |  |
|--------|-----------------------------------------------|-------------------|-----------------------|--------------------------|--------------------------|-----|--------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--|--|
|        | _(                                            | (MSB)             |                       |                          |                          |     |        | (LSB)                                                                                                                 | _                                                                                 |                                                                                         |  |  |
|        |                                               | TF1               | TR1                   | TF0                      | TR0                      | IE1 | IT1    | IE0                                                                                                                   | IT0                                                                               |                                                                                         |  |  |
| Symbol | Position                                      | N                 | ame and               | l Signifi                | cance                    | Sy  | ymbol  | Position                                                                                                              | Nam                                                                               | e and Significance                                                                      |  |  |
| TF1    | TCON.7                                        | hardwa<br>cleared |                       | er/Counte<br>are when    | er overflow<br>processor |     | IE1    | TCON.3 Interrupt 1 Edge flag. Set by hardware when external interrup edge detected. Cleared when interrupt processed. |                                                                                   |                                                                                         |  |  |
| TR1    | TCON.6                                        |                   | Run con<br>ware to tu |                          | et/cleared<br>Counter    |     | IT1    | TCON.2                                                                                                                | cleared by                                                                        | Type control bit. Set/<br>y software to specify<br>ge/low level triggered<br>nterrupts. |  |  |
| TF0    | TCON.5                                        | hardwa<br>cleared |                       | er overflow<br>processor | ·.                       | IE0 | TCON.1 | hardware                                                                                                              | D Edge flag. Set by<br>when external interrupt<br>cted.Cleared when<br>processed. |                                                                                         |  |  |
| TR0    | TCON.4                                        |                   | Run con ware to tu    |                          | et/cleared<br>Counter    |     | IT0    | TCON.0                                                                                                                | cleared by                                                                        | Type control bit. Set/<br>software to specify<br>ge/low level triggered<br>nterrupts.   |  |  |

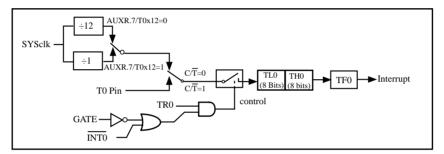

# 7.1 Timer/Counter 0 Mode of Operation

### Mode 0

In this mode, the timer register is configured as a 13-bit register. As the count rolls over from all 1s to all 0s, it sets the timer interrupt flag TF0. The counted input is enabled to the timer when  $\frac{TR0}{INT0} = 1$  and either GATE=0 or  $\frac{TRT0}{INT0} = 1$ . (Setting GATE = 1 allows the Timer to be controlled by external input  $\frac{TRT0}{INT0}$ , to facilitate pulse width measurements.) TR0 is a control bit in the Special Function Register TCON. GATE is in TMOD.

The 13-Bit register consists of all 8 bits of TH0 and the lower 5 bits of TL0. The upper 3 bits of TL0 are indeterminate and should be ignored. Setting the run flag (TR0) does not clear the registers.

There are two different GATE bits. one for Timer 1 (TMOD.7) and one for Timer 0 (TMOD.3).



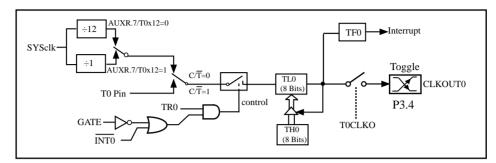

Timer/Counter 0 Mode 0: 13-Bit Counter

In this mode, the timer register is configured as a 16-bit register. As the count rolls over from all 1s to all 0s, it sets the timer interrupt flag TF0. The counted input is enabled to the timer when  $\overline{TR0} = 1$  and either GATE=0 or  $\overline{INT0} = 1$ . (Setting GATE = 1 allows the Timer to be controlled by external input  $\overline{INT0}$ , to facilitate pulse width measurements.) TR0 is a control bit in the Special Function Register TCON. GATE is in TMOD.

The 16-Bit register consists of all 8 bits of TH0 and the lower 8 bits of TL0. Setting the run flag (TR0) does not clear the registers.

Mode 1 is the same as Mode 0, except that the timer register is being run with all 16 bits.

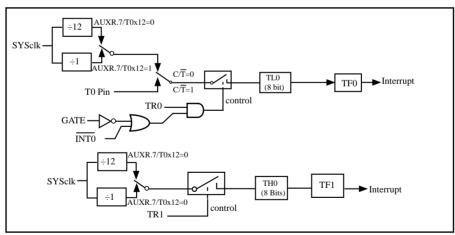



Timer/Counter 0 Mode 1:16-Bit Counter

## Mode 2

Mode 2 configures the timer register as an 8-bit counter(TL0) with automatic reload. Overflow from TL0 not only set TF0, but also reload TL0 with the content of TH0, which is preset by software. The reload leaves TH0 unchanged.

STC12C5A60S2 is able to generate a programmable clock output on P3.4. When T0CLKO bit in WAKE\_CLKO SFR is set, T0 timer overflow pulse will toggle P3.4 latch to generate a 50% duty clock. The frequency of clock-out is as following:


(SYSclk/2) / (256 – TH0), when T0x12=1 or (SYSclk/2/12) / (256 – TH0), when T0x1=0

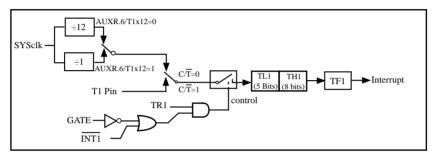


Timer/Counter 0 Mode 2: 8-Bit Auto-Reload

Timer 1 in Mode 3 simply holds its count, the effect is the same as setting TR1 = 0. Timer 0 in Mode 3 established TL0 and TH0 as two separate 8-bit counters. TL0 use the Timer 0 control bits: C/T, GATE, TR0,  $\overline{INT0}$  and TF0. TH0 is locked into a timer function (counting machine cycles) and takes over the use of TR1 from Tmer 1. Thus, TH0 now controls the "Timer 1" interrupt.

Mode 3 is provided for applications requiring an extra 8-bit timer or counter. When Timer 0 is in Mode 3, Timer 1 can be turned on and off by switching it out of and into its own Mode 3, or can still be used by the serial port as a baud rate generator, or in fact, in any application not requiring an interrupt.




Timer/Counter 0 Mode 3: Two 8-Bit Counters

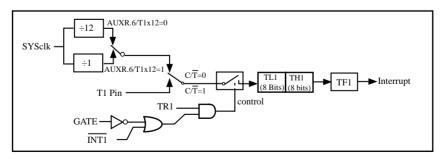
## 7.2 Timer/Counter 1 Mode of Operation

### Mode 0

In this mode, the timer register is configured as a 13-bit register. As the count rolls over from all 1s to all 0s, it sets the timer interrupt flag TF1. The counted input is enabled to the timer when  $\overline{TR1} = 1$  and either GATE=0 or  $\overline{INT1} = 1$ . (Setting GATE = 1 allows the Timer to be controlled by external input  $\overline{INT1}$ , to facilitate pulse width measurements.) TR0 is a control bit in the Special Function Register TCON. GATE is in TMOD.

The 13-Bit register consists of all 8 bits of TH1 and the lower 5 bits of TL1. The upper 3 bits of TL1 are indeterminate and should be ignored. Setting the run flag (TR1) does not clear the registers.



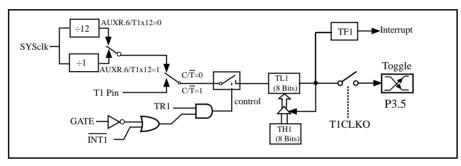

Timer/Counter 1 Mode 0: 13-Bit Counter

#### Mode 1

In this mode, the timer register is configured as a 16-bit register. As the count rolls over from all 1s to all 0s, it sets the timer interrupt flag TF1. The counted input is enabled to the timer when  $\overline{TR1} = 1$  and either GATE=0 or  $\overline{INT1} = 1$ . (Setting GATE = 1 allows the Timer to be controlled by external input  $\overline{INT1}$ , to facilitate pulse width measurements.) TR1 is a control bit in the Special Function Register TCON. GATE is in TMOD.

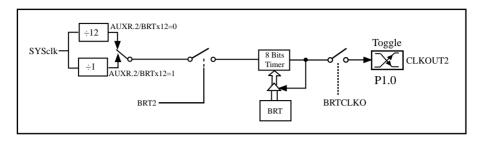
The 16-Bit register consists of all 8 bits of THl and the lower 8 bits of TL1. Setting the run flag (TR1) does not clear the registers.

Mode 1 is the same as Mode 0, except that the timer register is being run with all 16 bits.




Timer/Counter 1 Mode 1: 16-Bit Counter

Mode 2 configures the timer register as an 8-bit counter(TL1) with automatic reload. Overflow from TL1 not only set TFx, but also reload TL1 with the content of TH1, which is preset by software. The reload leaves TH1 unchanged.


STC11/10Fxx series is able to generate a programmable clock output on P3.5. When T0CLKO bit in WAKE\_CLKO SFR is set, T1 timer overflow pulse will toggle P3.5 latch to generate a 50% duty clock. The frequency of clock-out is as following:

(SYSclk/2) / (256 - TH1), when T1x12=1 or (SYSclk/2/12) / (256 - TH1), when T1x1=0



Timer/Counter 1 Mode 2: 8-Bit Auto-Reload

# 7.3 Baud Rate Generator and Programmable Clock Output on P1.0



STC11/10Fxx series are able to generate a programmable clock output on P1.0. When BRTCLKO bit in WAKE\_CLKO is set, BRT timer overflow pulse will toggle P1.0 latch to generate a 50% duty clock. The frequency of clock-out is as following:

 $\begin{array}{ccc} & (SYSclk/2) \, / \, (256 \, -BRT), & when \, BRTx12=1 \\ \text{or} & (SYSclk/2/12) \, / \, (256 \, -BRT) \, , & when \, BRTx1=0 \end{array}$ 

# Chapter 8. UART with enhanced function

The serial port is full duplex, meaning it can transmit and receive simultaneously. It is also receive-buffered, meaning it can commence reception of a second byte before a previously received byte has been read from the receive register. (However, if the first byte still hasn't been read by the time reception of the second byte is complete, one of the bytes will be lost). The serial port receive and transmit share the same SFR – SBUF, but actually there is two SBUF in the chip, one is for transmit and the other is for receive. The serial port can be operated in 4 different modes.

| Symbol    | Description                                    | Address | MSB      |          | Bit A   | ddress   | and Sy  | mbol   |        | LSB    | Value after<br>Power-on or<br>Reset |
|-----------|------------------------------------------------|---------|----------|----------|---------|----------|---------|--------|--------|--------|-------------------------------------|
| BRT       | Baud-Rate Timer                                | 9CH     |          |          |         |          |         |        |        |        | 0000 0000B                          |
| AUXR      | Auxiliary register                             | 8EH     | T0x12 T1 | x12 UA   | RT_M0x6 | BRTR     | -       | BRTx12 | XRAM   | S1BRS  | 0000 0000B                          |
| SCON      | Serial Control                                 | 98H     | SM0/FE   | SM1      | SM2     | REN      | TB8     | RB8    | TI     | RI     | 0000 0000B                          |
| SBUF      | Serial Buffer                                  | 99H     |          |          |         |          |         |        |        |        | xxxx xxxxB                          |
| PCON      | Power Control                                  | 87H     | SMOD     | SMOD     | LVDF    | POF      | GF1     | GF0    | PD     | IDL    | 0001 0000B                          |
| IE        | Interrupt Enable                               | A8H     | EA       | ELVD     | -       | ES       | ET1     | EX1    | ET0    | EX0    | 0x00 0000B                          |
| IP        | Interrupt Priority<br>Low                      | В8Н     | -        | PLVD     | -       | PS       | PT1     | PX1    | PT0    | PX0    | 0000 0000B                          |
| SADEN     | Slave Address<br>Mask                          | В9Н     |          |          |         |          |         |        |        |        | 0000 0000B                          |
| SADDR     | Slave Address                                  | А9Н     |          |          |         |          |         |        |        |        | 0000 0000B                          |
| TCON      | Timer Control                                  | 88H     | TF1      | TR1      | TF0     | TR0      | IE1     | IT1    | IE0    | IT0    | 0000 0000B                          |
| TMOD      | Timer Mode                                     | 89H     | GATE     | C/T      | M1      | M0       | GATE    | C/T    | M1     | M0     | 0000 0000B                          |
| TL1       | Timer Low 1                                    | 8BH     |          |          |         |          |         |        |        |        | 0000 0000B                          |
| TH1       | Timer High 1                                   | 8DH     |          |          |         |          |         |        |        |        | 0000 0000B                          |
| AUXR1     | Auxiliary register1                            | A2H     | UART     | _P1      | -   -   | -        | GF2     | -      | -      | DPS    | 0xxx 0xx0B                          |
| WAKE_CLKO | CLK_Output Power down Wake-up control register | 8FH     | - RXD_PI | N_IE T1_ | PIN_IE  | Γ0_PIN_I | E - BRT | CLKO   | T1CLKO | T0CLKO | 0000 0000B                          |

## **SCON** register

LSB

| bit  | 7      | 6   | 5   | 4   | 3   | 2   | 1  | 0  |
|------|--------|-----|-----|-----|-----|-----|----|----|
| name | SM0/FE | SM1 | SM2 | REN | TB8 | RB8 | TI | RI |

FE: Framing Error bit. The SMOD0 bit must be set to enable access to the FE bit

0: The FE bit is not cleared by valid frames but should be cleared by software.

1: This bit set by the receiver when an invalid stop bit id detected.

SM0.SM1: Serial Port Mode Bit 0/1.

| SM0 | SM1 | Description          | Baud rate                      |
|-----|-----|----------------------|--------------------------------|
| 0   | 0   | 8-bit shift register | SYSclk/12                      |
| 0   | 1   | 8-bit UART           | variable                       |
| 1   | 0   | 9-bit UART           | SYSclk/64 or SYSclk/32(SMOD=1) |
| 1   | 1   | 9-bit UART           | variable                       |

SM2: Enable the automatic address recognition feature in mode 2 and 3. If SM2=1, RI will not be set unless the received 9th data bit is 1, indicating an address, and the received byte is a Given or Broadcast address. In mode1, if SM2=1 then RI will not be set unless a valid stop Bit was received, and the received byte is a Given or Broadcast address. In mode 0, SM2 should be 0.

REN: When set enables serial reception.

TB8: The 9th data bit which will be transmitted in mode 2 and 3. RB8: In mode 2 and 3, the received 9th data bit will go into this bit.

TI: Transmit interrupt flag. RI: Receive interrupt flag.

## **SBUF** register

LSB

| bit  | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|------|---|---|---|---|---|---|---|---|
| name |   |   |   |   |   |   |   |   |

It is used as the buffer register in transmission and reception.

# **BRT** register

LSB

| bit  | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|------|---|---|---|---|---|---|---|---|
| name |   |   |   |   |   |   |   |   |

It is used as the reload register for generating the baud-rate of the secondary UART.

## **PCON: Power Control register**

LSB

| bit  | 7    | 6     | 5    | 4   | 3   | 2   | 1  | 0   |
|------|------|-------|------|-----|-----|-----|----|-----|
| name | SMOD | SMOD0 | LVDF | POF | GF1 | GF0 | PD | IDL |

SMOD: double Baud rate control bit.

0: Disable double Baud rate of the UART.

1: Enable double Baud rate of the UART in mode 1,2,or 3.

SMOD0: Frame Error select.

0: SCON.7 is SM0 function.

1: SCON.7 is FE function. Note that FE will be set after a frame error regardless of the state of SMOD0.

## **AUXR** register

LSB

| bit  | В7    | В6    | B5        | B4   | В3 | B2     | B1   | В0    |
|------|-------|-------|-----------|------|----|--------|------|-------|
| name | T0x12 | T1x12 | UART_M0x6 | BRTR | -  | BRTx12 | XRAM | S1BRS |

#### T1x12

0: The clock source of Timer 1 is SYSclk/12.

1: The clock source of Timer 1 is SYSclk/1.

UART M0x6: Serial Port mode 0 baud rate selector.

0 : Clear to select SYSclk/12 as the baud rate for UART Mode 0.

1 : Set to select SYSclk/2 as the baud rate for UART Mode 0.

BRTR: Independent Baud-rate generator control bit.

0: The independent baud-rate generator is stoped

1: The independent baud-rate generator is stoped

#### BRTx12

0: The independent baud-rate is incremented every 12 system clocks.

1: The independent baud-rate is incremented every system clock.

#### S1BRS

0: select Timer 1 as the baud-rate generator of the enhanced UART.

1: Timer 1 is replaced by the independent baud-rate generator for use of the enhanced UART. In other word, time 1 is released to use in other functions.

## SADEN: Slave Address Mask register

LSB

| bit  | В7 | В6 | B5 | B4 | В3 | B2 | B1 | В0 |
|------|----|----|----|----|----|----|----|----|
| name |    |    |    |    |    |    |    |    |

## SADDR: Slave Address register

LSB

| bit  | В7 | В6 | B5 | B4 | В3 | B2 | B1 | В0 |
|------|----|----|----|----|----|----|----|----|
| name |    |    |    |    |    |    |    |    |

SADDR register is combined with SADEN register to form Given/Broadcast Address for automatic address recognition. In fact, SADEN function as the "mask" register for SADDR register. The following is the example for it.

SADDR = 1100 0000 SADEN = 1111 1101

Given =  $1100 \ 00x0$ 

The Given slave address will be checked except bit 1 is treated as "don't care".

The Broadcast Address for each slave is created by taking the logical OR of SADDR and SADEN. Zero in this result is considered as "don't care" and a Broad cast Address of all "don't care". This disables the automatic address detection feature.

## **AUXR1** register

LSB

| bit  | В7      | В6 | B5 | B4 | В3  | B2 | B1 | В0  |
|------|---------|----|----|----|-----|----|----|-----|
| name | UART_P1 | -  | -  | -  | GF2 | -  | -  | DPS |

### UART P1

0: UART on Port 3(RXD/P3.0, TXD/P3.1). 1: UART on Port 1(RXD/P1.6.TXD/P1.7).

GF2: General Flag. It can be used by software.

### DPS

0 : DPTR0 is selected(Default).

1 : The secondary DPTR(DPTR1) is switched to use.

## WAKE CLKO register

| bit  | В7 | В6         | B5        | B4        | В3 | B2      | B1     | В0     |
|------|----|------------|-----------|-----------|----|---------|--------|--------|
| name | -  | RXD_PIN_IE | T1_PIN_IE | T0_PIN_IE | -  | BRTCKLO | T1CKLO | T0CKLO |

RXD\_PIN\_IE :When set and the associated-UART interrupt control registers is configured correctly, the RXD pin (P3.0) is enabled to wake up MCU from power-down state.

T1\_PIN\_IE: When set and the associated-Timer1 interrupt control registers is configured correctly, the T1 pin (P3.5) is enabled to wake up MCU from power-down state.

T0\_PIN\_IE: When set and the associated-Timer0 interrupt control registers is configured correctly, the T1 pin (P3.4) is enabled to wake up MCU from power-down state.

BRTCKLO : When set, P1.0 is enabled to be the clock output of Baud-Rate Timer (BRT). The clock rate is BRG overflow rate divided by 2.

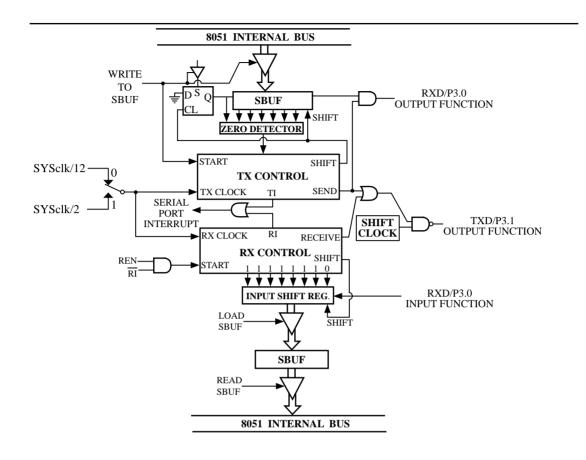
T1CKLO: When set, P3.5 is enabled to be the clock output of Timer 1. The clock rate is Timer 1 overflow rate divided by 2.

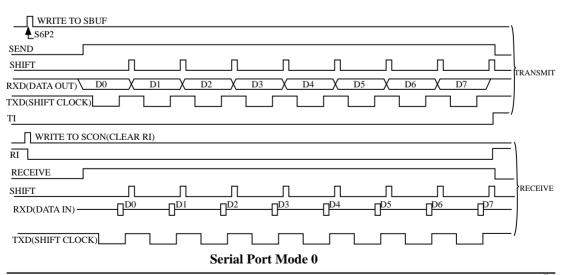
T0CKLO: When set, P3.4 is enabled to be the clock output of Timer 0. The clock rate is Timer 0overflow rate divided by 2.

## **8.1 UART Mode of Operation**

#### Mode 0

Serial data enters and exits through RXD. TXD outputs the shift clock. Eight data bits are transmitted/ received with the LSB first. The baud rate is fixed at 1/12 the System clock cycle in the default state. If AUXR.5(UART\_M0x6) is set, the baud rate is 1/2 System clock cycle.


Transmission is initiated by any instruction that uses SBUF as a destination register. The "write to SBUF" signal also loads a "1" into the 9<sup>th</sup> position of the transmit shift register and tells the TX Control block to commence a transmission. The internal timing is such that one full system clock cycle will elapse between "write to SBUF," and activation of SEND.


SEND transfers the output of the shift register to the alternate output function line of P3.0, and also transfers Shift Clock to the alternate output function line of P3.1. At the falling edge of the Shift Clock, the contents of the shift register are shifted one position to the right.

As data bits shift out to the right, "0" come in from the left. When the MSB of the data byte is at the output position of the shift register, then the "1" that was initially loaded into the 9<sup>th</sup> position is just to the left of the MSB, and all positions to the left of that contains zeroes. This condition flags the TX Control block to do one last shift and then deactivate SEND and set TI. Both of these actions occur after "write to SBUF".

Reception is initiated by the condition REN=1 and RI=0. After that, the RX Control unit writes the bits 11111110 to the receive shift register, and in the next clock phase activates RECEIVE. RECEIVE enables SHIFT CLOCK to the alternate output function line of P3.1.At RECEIVE is active, the contents of the receive shift register are shifted to the left one position. The value that comes in from the right is the value that was sampled at the P3.0 pin the rising edge of Shift clock.

As data bits come in from the right, "1"s shift out to the left. When the "0" that was initially loaded into the right-most position arrives at the left-most position in the shift register, it flags the RX Control block to do one last shift and load SBUF. Then RECEIVE is cleared and RI is set.





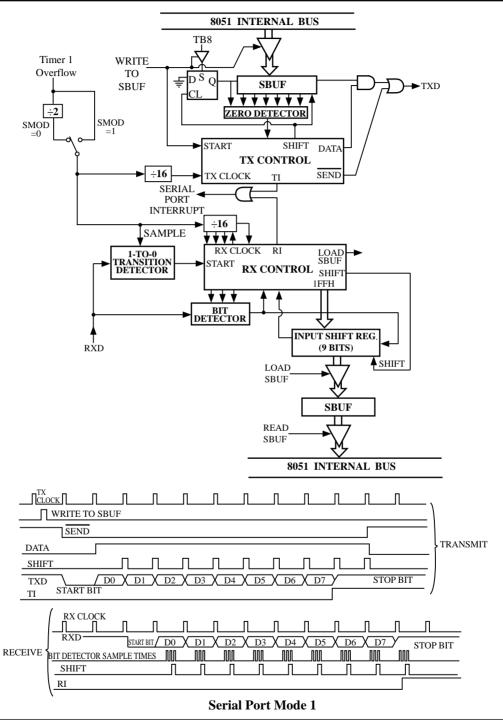
10 bits are transmitted through TXD or received through RXD. The frame data includes a start bit(0), 8 data bits and a stop bit(1). One receive, the stop bit goes into RB8 in SFR – SCON. The baud rate is determined by the Timer 1 or BRT overflow rate.

```
Baud rate in mode 1 = (2^{SMOD}/32) x timer 1 overflow rate (if AUXR.0/S1BRS=0)
= (2^{SMOD}/32) x BRT overflow rate (if AUXR.0/S1BRS=1)
```

Transmission is initiated by any instruction that uses SBUF as a destination register. The "write to SBUF" signal also loads a "1" into the 9<sup>th</sup> bit position of the transmit shift register and flags the TX Control unit that a transmission is requested. Transmission actually happens at the next rollover of divided-by-16 counter. Thus the bit times are synchronized to the divided-by-16 counter, not to the "write to SBUF" signal.

The transmission begins with activation of  $\overline{SEND}$ , which puts the start bit at TXD. One bit time later, DATA is activated, which enables the output bit of the transmit shift register to TXD. The first shift pulse occurs one bit time after that.

As data bits shift out to the right, zeroes are clocked in from the left. When the MSB of the data byte is at the output position of the shift register, then the 1 that was initially loaded into the 9<sup>th</sup> position is just to the left of the MSB, and all positions to the left of that contain zeroes. This condition flags the TX Control unit to do one last shift and then deactivate SEND and set TI. This occurs at the 10<sup>th</sup> divide-by-16 rollover after "write to SBUF."


Reception is initiated by a 1-to-0 transition detected at RXD. For this purpose, RXD is sampled at a rate of 16 times the established baud rate. When a transition is detected, the divided-by-16 counter is immediately reset, and 1FFH is written into the input shift register. Resetting the divided-by-16 counter aligns its roll-overs with the boundaries of the incoming bit times.

The 16 states of the counter divide each bit time into 16ths. At the  $7^{th}$ ,  $8^{th}$  and  $9^{th}$  counter states of each bit time, the bit detector samples the value of RXD. The value accepted is the value that was seen in at least 2 of the 3 samples. This is done to reject noise. In order to reject false bits, if the value accepted during the first bit time is not a 0, the receive circuits are reset and the unit continues looking for another 1-to-0 transition. This is to provide rejection of false start bits. If the start bit is valid, it is shifted into the input shift register, and reception of the rest of the frame proceeds.

As data bits come in from the right, "1"s shift out to the left. When the start bit arrives at the left most position in the shift register, (which is a 9-bit register in Mode 1), it flags the RX Control block to do one last shift, load SBUF and RB8, and set RI. The signal to load SBUF and RB8 and to set RI is generated if, and only if, the following conditions are met at the time the final shift pulse is generated.

- 1) RI=0 and
- 2) Either SM2=0, or the received stop bit = 1

If either of these two conditions is not met, the received frame is irretrievably lost. If both conditions are met, the stop bit goes into RB8, the 8 data bits go into SBUF, and RI is activated. At this time, whether or not the above conditions are met, the unit continues looking for a 1-to-0 transition in RXD.



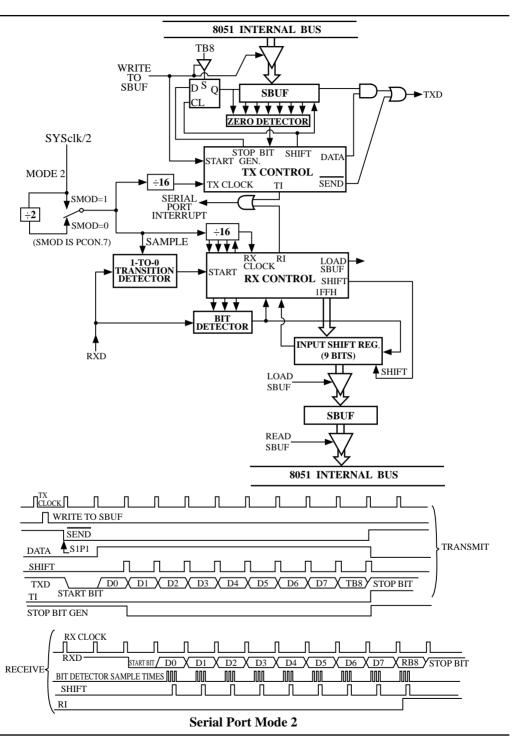
11 bits are transmitted through TXD or received through RXD. The frame data includes a start bit(0), 8 data bits, a programmable 9th data bit and a stop bit(1). On transmit, the 9th data bit comes from TB8 in SCON. On receive, the 9th data bit goes into RB8 in SCON. The baud rate is programmable to either 1/32 or 1/64 the System clock cycle.

Baud rate in mode  $2 = (2^{SMOD}/64) \times SYSclk$ 

Transmission is initiated by any instruction that uses SBUF as a destination register. The "write to SBUF" signal also loads TB8 into the 9<sup>th</sup> bit position of the transmit shift register and flags the TX Control unit that a transmission is requested. Transmission actually happens at the next rollover of divided-by-16 counter. Thus the bit times are synchronized to the divided-by-16 counter, not to the "write to SBUF" signal.

The transmission begins when /SEND is activated, which puts the start bit at TXD. One bit time later, DATA is activated, which enables the output bit of the transmit shift register to TXD. The first shift pulse occurs one bit time after that. The first shift clocks a "1"(the stop bit) into the 9<sup>th</sup> bit position on the shift register. Thereafter, only "0"s are clocked in. As data bits shift out to the right, "0"s are clocked in from the left. When TB8 of the data byte is at the output position of the shift register, then the stop bit is just to the left of TB8, and all positions to the left of that contains "0"s. This condition flags the TX Control unit to do one last shift, then deactivate /SEND and set TI. This occurs at the 11<sup>th</sup> divided-by-16 rollover after "write to SBUF".

Reception is initiated by a 1-to-0 transition detected at RXD. For this purpose, RXD is sampled at a rate of 16 times whatever baud rate has been established. When a transition is detected, the divided-by-16 counter is immediately reset, and 1FFH is written into the input shift register.


At the  $7^{th}$ ,  $8^{th}$  and  $9^{th}$  counter states of each bit time, the bit detector samples the value of RXD. The value accepted is the value that was seen in at least 2 of the 3 samples. This is done to reject noise. In order to reject false bits, if the value accepted during the first bit time is not a 0, the receive circuits are reset and the unit continues looking for another 1-to-0 transition. If the start bit is valid, it is shifted into the input shift register, and reception of the rest of the frame proceeds.

As data bits come in from the right, "1"s shift out to the left. When the start bit arrives at the leftmost position in the shift register, (which is a 9-bit register in Mode-2 and 3), it flags the RX Control block to do one last shift, load SBUF and RB8, and set RI. The signal to load SBUF and RB8 and to set RI is generated if, and only if, the following conditions are met at the time the final shift pulse is generated.:

- 1) RI=0 and
- 2) Either SM2=0, or the received  $9^{th}$  data bit = 1

If either of these two conditions is not met, the received frame is irretrievably lost. If both conditions are met, the stop bit goes into RB8, the first 8 data bits go into SBUF, and RI is activated. At this time, whether or not the above conditions are met, the unit continues looking for a 1-to-0 transition at the RXD input.

Note that the value of received stop bit is irrelevant to SBUF, RB8 or RI.

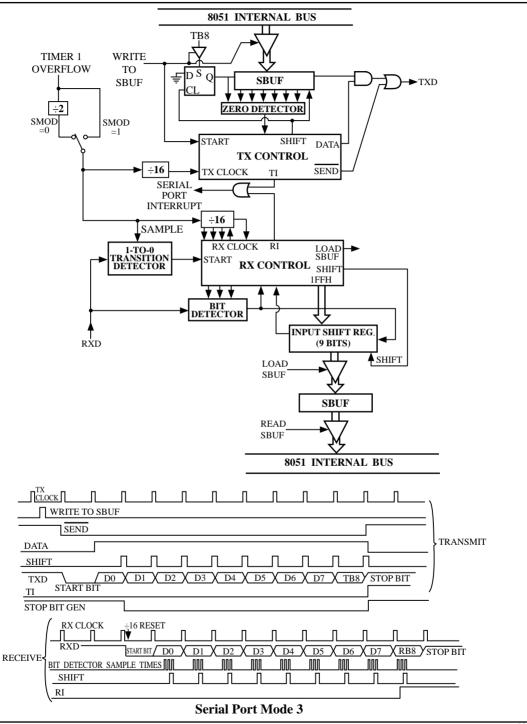


Mode 3 is the same as mode 2 except the baud rate is variable.

```
Baud rate in mode 3 = (2^{SMOD}/32) x timer 1overflow rate (if AUXR.0/S1BRS=0) = (2^{SMOD}/32) x BRT overflow rate (if AUXR.0/S1BRS=1)
```

In all four modes, transmission is initiated by any instruction that use SBUF as a destination register. Reception is initiated in mode 0 by the condition RI = 0 and REN = 1. Reception is initiated in the other modes by the incoming start bit with 1-to-0 transition if REN=1.

## **8.2 Frame Error Detection**


When used for frame error detect, the UART looks for missing stop bits in the communication. A missing bit will set the FE bit in the SCON register. The FE bit shares the SCON.7 bit with SM0 and the function of SCON.7 is determined by PCON.6(SMOD0). If SMOD0 is set then SCON.7 functions as FE. SCON.7 functions as SM0 when SMOD0 is cleared. When used as FE, SCON.7 can only be cleared by software.

## 8.3 Multiprocessor Communications

Modes 2 and 3 have a special provision for multiproceasor communications. In these modes 9 data bits are received. The 9th one goes into RB8. Then comes a stop bit. The port can be programmed such that when the stop bit is received, the serial port interrupt will be activated only if RB8 = 1. This feature is enabled by setting bit SM2 in SCON. A way to use this feature in multiprocessor systems is as follows.

When the master processor wants to transmit a block of data to one of several slaves, it first sends out an address byte which identifies the target slave. An address byte differs from a data byte in that the 9th bit is 1 in an address byte and 0 in a data byte. With SM2 = 1, no slave will be interrupted by a data byte. An address byte, however, will interrupt all slaves, so that each slave can examine the received byte and see if it is being addressed. The addressed slave will clear its SM2 bit and prepare to receive the data bytes that will be coming. The slaves that weren't being addressed leave their SM2s set and go on about their business, ignoring the coming data bytes.

SM2 has no effect in Mode 0, and in Mode 1 can be used to check the validity of the stop bit. In a Mode 1 reception, if SM2 = 1, the receive interrupt will not be activated unless a vatid stop bit is received.



## 8.4 Automatic Address Recognition

Automatic Address Recognition is a future which allows the UART to recognize certain addresses in the serial bit stream by using hardware to make the comparisons. This feature saves a great deal of software overhead by eliminating the need for the software to examine every serial address which passes by the serial port. This feature is enabled by setting the SM2 bit in SCON. In the 9-bit UART modes, Mode 2 and Mode 3, the Receive interrupt flag(RI) will be automatically set when the received byte contains either the "Given" address or the "Broadcast" address. The 9-bit mode requires that the 9<sup>th</sup> information bit is a "1" to indicate that the received information is an address and not data.

The 8-bit mode is called Mode 1. In this mode the RI flag will be set if SM2 is enabled and the information received has a valid stop bit following the 8 address bits and the information is either a Given or Broadcast address.

Mode 0 is the Shift Register mode and SM2 is ignored.

Using the Automatic Address Recognition feature allows a master to selectively communicate with one or more slaves by invoking the given slave address or addresses. All of the slaves may be contacted by using the broadcast address. Two special function registers are used to define the slave's address, SADDR, and the address mask, SADEN. SADEN is used to define which bits in the SADDR are to be used and which bits are "don't care". The SADEN mask can be logically ANDed with the SADDR to create the "Given" address which the master will use for addressing each of the slaves. Use of the Given address allows multiple slaves to be recognized which excluding others. The following examples will help to show the versatility of this scheme:

Slave 0 SADDR = 1100 0000 SADEN = 1111 1101 GIVEN = 1100 00x0 Slave 1 SADDR = 1100 0000 SADEN = 1111 1110 GIVEN = 1100 000x

In the previous example SADDR is the same and the SADEN data is used to differentiate between the two slaves. Slave 0 requires a "0" in bit 0 and it ignores bit 1. Slave 1 requires a "0" in bit 1 and bit 0 is ignored. A unique address for slave 0 would be 11000010 since slave 1 requires a "0" in bit 1. A unique address for slave 1 would be 11000001 since a "1" in bit 0 will exclude slave 0. Both slaves can be selected at the same time by an address which has bit 0=0 (for slave 0) and bit 1=0 (for salve 1). Thus, both could be addressed with 11000000.

In a more complex system the following could be used to select slaves 1 and 2 while excluding slave 0:

| Slave 0 | SADDR = 1100 0000<br>SADEN = 1111 1001<br>GIVEN = 1100 0xx0 |
|---------|-------------------------------------------------------------|
| Slave 1 | SADDR = 1110 0000<br>SADEN = 1111 1010<br>GIVEN = 1110 0x0x |
| Slave 2 | SADDR = 1110 0000<br>SADEN = 1111 1100<br>GIVEN = 1110 00xx |

In the above example the differentiation among the 3 slaves is in the lower 3 address bits. Slave 0 requires that bit 0 = 0 and it can be uniquely addressed by 11100110. Slave 1 requires that bit 1=0 and it can be uniquely addressed by 11100101. Slave 2 requires that bit 2=0 and its unique address is 11100011. To select Salve 0 and 1 and exclude Slave 2, use address 11100100, since it is necessary to make bit2=1 to exclude Slave 2.

The Broadcast Address for each slave is created by taking the logic OR of SADDR and SADEN. Zeros in this result are trended as don't cares. In most cares, interpreting the don't cares as ones, the broadcast address will be FF hexadecimal.

Upon reset SADDR and SADEN are loaded with "0"s. This produces a given address of all "don't cares as well as a Broadcast address of all "don't cares". This effectively disables the Automatic Addressing mode and allows the microcontroller to use standard 80C51-type UART drivers which do not make use of this feature.

### 8.5 Buad Rates

The baud rate in Mode 0 is fixed:

$$\label{eq:mode 0 Baud Rate} \begin{tabular}{c} SYSclk \\ or = & \hline & 2 \\ \end{tabular} \begin{tabular}{c} SYSclk \\ when AUXR.5/UART\_M0x6 = 0 \\ \end{tabular}$$

The baud rate in Mode 2 depends on the value of bit SMOD in Special Function Register PCON. If SMOD =0 (which is the value on reset), the baud rate  $^{1}/_{64}$  the System clock cycle. If SMOD = 1, the baud rate is  $^{1}/_{32}$  the System clock cycle .

Mode 2 Baud Rate = 
$$\frac{2^{\text{SMOD}}}{64} \times (\text{SYSclk})$$

In the STC11F60XE, the baud rates in Modes 1 and 3 are determined by Timer1 or BRT overflow rate. The baud rate in Mode 1 and 3 are fixed:

Mode 1,3 Baud rate = 
$$(2^{\text{SMOD}}/32)$$
 x timer 1 overflow rate (if AUXR.0/S1BRS=0)  
=  $(2^{\text{SMOD}}/32)$  x BRT overflow rate (if AUXR.0/S1BRS=1)

Timer 1 overflow rate = (SYSclk/12)/(256 - TH1); BRT overflow rate = (SYSclk/2) / (256 - BRT), when AUXR.2/BRTx12=1 or = (SYSclk/2/12) / (256 - BRT), when AUXR.2/BRTx12=0

When Timer 1 is used as the baud rate generator, the Timer 1 interrupt should be disabled in this application. The Timer itself can be configured for either "timer" or "cormter" operation, and in any of its 3 running modes. In the most typical applications, it is configured for "timer" operation, in the auto-reload mode (high nibble of TMOD = 0010B).

One can achieve very low baud rate with Timer 1 by leaving the Timer 1 interrupt enabled, and configuring the Timer to run as a 16-bit timer (high nibble of TMOD = 0001B), and using the Timer 1 interrupt to do a 16-bit software reload.

The following figure lists various commonly used baud rates and how they can be obtained from Timer 1.

|                 |           |      |     | Timer | 1               |
|-----------------|-----------|------|-----|-------|-----------------|
| Baud Rate       | SYSclk    | SMOD | C/T | Mode  | Reload<br>Value |
| Mode 0 MAX:1MHZ | 12MHZ     | X    | X   | X     | X               |
| Mode 2 MAX:375K | 12MHZ     | 1    | X   | X     | X               |
| Mode 1,3:62.5K  | 12MHZ     | 1    | 0   | 2     | FFH             |
| 19.2K           | 11.059MHZ | 1    | 0   | 2     | FDH             |
| 9.6K            | 11.059MHZ | 0    | 0   | 2     | FDH             |
| 4.8K            | 11.059MHZ | 0    | 0   | 2     | FAH             |
| 2.4K            | 11.059MHZ | 0    | 0   | 2     | F4H             |
| 1.2K            | 11.059MHZ | 0    | 0   | 2     | E8H             |
| 137.5           | 11.986MHZ | 0    | 0   | 2     | 1DH             |
| 110             | 6MHZ      | 0    | 0   | 2     | 72H             |
| 110             | 12MHZ     | 0    | 0   | 1     | FEEBH           |

**Timer 1 Generated Commonly Used Baud Rates** 

# Chapter 9 IAP/EEPROM

The ISP in STC11Fxx/10xx series makes it possible to update the user's application program and non-volatile application data (in IAP-memory) without removing the MCU chip from the actual end product. This useful capability makes a wide range of field-update applications possible. (Note ISP needs the loader program preprogrammed in the ISP-memory.) In general, the user needn't know how ISP operates because STC has provided the standard ISP tool and embedded ISP code in STC shipped samples.

# IAP / ISP Control Register

The following special function registers are related to the IAP/ISP operation. All these registers can be accessed by software in the user's application program.

| Symbol    | Description                       | Address | Bit Address and Symbol MSB LSB          | Value after<br>Power-on or<br>Reset |
|-----------|-----------------------------------|---------|-----------------------------------------|-------------------------------------|
| IAP_DATA  | ISP/IAP Flash Data<br>Register    | С2Н     |                                         | 1111 1111B                          |
| IAP_ADDRH | ISP/IAP Flash<br>Address High     | СЗН     |                                         | 0000 0000B                          |
| IAP_ADDRL | ISP/IAP Flash<br>Address Low      | С4Н     |                                         | 0000 0000B                          |
| IAP_CMD   | ISP/IAP Flash<br>Command Register | С5Н     | MS1 MS0                                 | xxxx x000B                          |
| IAP_TRIG  | ISP/IAP Flash<br>Command Trigger  | С6Н     |                                         | xxxx xxxxB                          |
| IAP_CONTR | ISP/IAP Control<br>Register       | С7Н     | IAPEN SWBS SWRST CMD_FAIL - WT2 WT1 WT0 | 0000 x000B                          |
| PCON      | Power Control                     | 87H     | SMOD SMODO LVDF POF GF1 GF0 PD IDL      | 0011 0000B                          |

## IAP\_DATA: ISP/IAP Flash Data Register

LSB

| bit  | В7 | B6 | B5 | B4 | В3 | B2 | B1 | В0 |
|------|----|----|----|----|----|----|----|----|
| name |    |    |    |    |    |    |    |    |

IAP\_DATA is the data port register for ISP/IAP operation. The data in IAP\_DATA will be written into the desired address in operating ISP/IAP write and it is the data window of readout in operating ISP/IAP read.

## IAP\_ADDRH: ISP/IAP Flash Address High

LSB

| bit  | В7 | B6 | B5 | B4 | В3 | B2 | B1 | В0 |
|------|----|----|----|----|----|----|----|----|
| name |    |    |    |    |    |    |    |    |

IAP\_ADDRH is the high-byte address port for all ISP/IAP modes.

## IAP\_ADDRL: ISP/IAP Flash Address Low

LSB

| bit  | B7 | В6 | B5 | B4 | В3 | B2 | B1 | В0 |
|------|----|----|----|----|----|----|----|----|
| name |    |    |    |    |    |    |    |    |

IAP\_ADDRL is the low port for all ISP/IAP modes. In page erase operation, it is ignored.

## IAP\_CMD: ISP/IAP Flash Command Register

LSB

| bit  | В7 | B6 | B5 | B4 | В3 | B2 | B1  | В0  |
|------|----|----|----|----|----|----|-----|-----|
| name | -  | -  | -  | -  | -  | -  | MS1 | MS0 |

B7~B2: Reserved.

MS1, MS0: ISP/IAP operating mode selection. IAP\_CMD is used to select the flash mode for performing numerous ISP/IAP function or used to access protected SFRs.

0, 0 : Standby

0, 1: Data Flash/EEPROM read.

1, 0: Data Flash/EEPROM program.

1, 1: Data Flash/EEPROM page erase.

## IAP\_TRIG: ISP/IAP Flash Command Trigger.

LSB

| bit  | В7 | B6 | B5 | B4 | В3 | B2 | B1 | В0 |
|------|----|----|----|----|----|----|----|----|
| name |    |    |    |    |    |    |    |    |

IAP\_TRIG is the command port for triggering ISP/IAP activity and protected SFRs access. If IAP\_TRIG is filled with sequential 0x5Ah, 0xA5h and if IAPEN(IAP\_CONTR.7) = 1, ISP/IAP activity or protected SFRs access will triggered.

## IAP\_CONTR: ISP/IAP Control Register

LSB

| bit  | В7    | В6   | B5    | B4       | В3 | B2  | B1  | В0  |
|------|-------|------|-------|----------|----|-----|-----|-----|
| name | IAPEN | SWBS | SWRST | CMD_FAIL | -  | WT2 | WT1 | WT0 |

IAPEN: ISP/IAP operation enable.

0: Global disable all ISP/IAP program/erase/read function.

1: Enable ISP/IAP program/erase/read function.

SWBS: software boot selection control.

0: Boot from main-memory after reset.

1: Boot from ISP memory after reset.

SWRST: software reset trigger control.

0: No operation

1: Generate software system reset. It will be cleared by hardware automatically.

CMD\_FAIL: Command Fail indication for ISP/IAP operation.

0: The last ISP/IAP command has finished successfully.

1: The last ISP/IAP command fails. It could be caused since the access of flash memory was inhibited.

B3: Reserved. Software must write "0" on this bit when IAP\_CONTR is written.

WT2~WT0: ISP/IAP programming clock source selection.

| Setting | g wait | times |           | CPU wait times |                |                       |  |  |  |  |  |  |  |
|---------|--------|-------|-----------|----------------|----------------|-----------------------|--|--|--|--|--|--|--|
| WT2     | WT1    | WT0   | Read      | Program        | Sector Erase   | Recommended System    |  |  |  |  |  |  |  |
| W1Z     | WII    | WIU   | Read      | <=55uS         | <=21mS         | Clock Frequency (MHz) |  |  |  |  |  |  |  |
| 1       | 1      | 1     | 2 SYSclks | 55 SYSclks     | 21012 SYSclks  | < 1MHz                |  |  |  |  |  |  |  |
| 1       | 1      | 0     | 2 SYSclks | 110 SYSclks    | 42024 SYSclks  | < 2MHz                |  |  |  |  |  |  |  |
| 1       | 0      | 1     | 2 SYSclks | 165 SYSclks    | 63036 SYSclks  | < 3MHz                |  |  |  |  |  |  |  |
| 1       | 0      | 0     | 2 SYSclks | 330 SYSclks    | 126072 SYSclks | < 6MHz                |  |  |  |  |  |  |  |
| 0       | 1      | 1     | 2 SYSclks | 660 SYSclks    | 252144 SYSclks | < 12MHz               |  |  |  |  |  |  |  |
| 0       | 1      | 0     | 2 SYSclks | 1100 SYSclks   | 420240 SYSclks | < 20MHz               |  |  |  |  |  |  |  |
| 0       | 0      | 1     | 2 SYSclks | 1320 SYSclks   | 504288 SYSclks | < 24MHz               |  |  |  |  |  |  |  |
| 0       | 0      | 0     | 2 SYSclks | 1760 SYSclks   | 672384 SYSclks | < 30MHz               |  |  |  |  |  |  |  |

| STC11Fxx / STC11Lxx serie                                      | es MCU inter | nal EEPROM | I Selection Table |             |  |  |  |  |  |  |  |  |
|----------------------------------------------------------------|--------------|------------|-------------------|-------------|--|--|--|--|--|--|--|--|
| T                                                              | EEPROM       | Sector     | Begin_Sector      | End_Sector  |  |  |  |  |  |  |  |  |
| Туре                                                           | (Byte)       | Numbers    | Begin_Address     | Ene_Address |  |  |  |  |  |  |  |  |
| STC11F01E/STC11L01E                                            | 2K           | 4          | 0000Н             | 0FFFH       |  |  |  |  |  |  |  |  |
| STC11F02E/STC11L02E                                            | 2K           | 4          | 0000H             | 0FFFH       |  |  |  |  |  |  |  |  |
| STC11F03E/STC11L03E                                            | 2K           | 4          | 0000H             | 0FFFH       |  |  |  |  |  |  |  |  |
| STC11F04E/STC11L04E                                            | 1K           | 2          | 0000Н             | 3FFH        |  |  |  |  |  |  |  |  |
| STC11F05E/STC11L05E                                            | 1K           | 2          | 0000H             | 3FFH        |  |  |  |  |  |  |  |  |
| STC11Fxx / STC11Lxx series MCU internal EEPROM Selection Table |              |            |                   |             |  |  |  |  |  |  |  |  |
| Trimo                                                          | EEPROM       | Sector     | Begin_Sector      | End_Sector  |  |  |  |  |  |  |  |  |
| Туре                                                           | (Byte)       | Numbers    | Begin_Address     | Ene_Address |  |  |  |  |  |  |  |  |
| STC11F08XE/STC11L08XE                                          | 32K          | 64         | 0000H             | 7FFFH       |  |  |  |  |  |  |  |  |
| STC11F16XE/STC11L16XE                                          | 32K          | 64         | 0000H             | 7FFFH       |  |  |  |  |  |  |  |  |
| STC11F20XE/STC11L20XE                                          | 29K          | 58         | 0000H             | 73FFH       |  |  |  |  |  |  |  |  |
| STC11F32XE/STC11L32XE                                          | 29K          | 58         | 0000H             | 73FFH       |  |  |  |  |  |  |  |  |
| STC11F40XE/STC11L40XE                                          | 21K          | 42         | 0000H             | 53FFH       |  |  |  |  |  |  |  |  |
| STC11F48XE/STC11L48XE                                          | 13K          | 26         | 0000H             | 33FFH       |  |  |  |  |  |  |  |  |
| STC11F52XE/STC11L52XE                                          | 9K           | 18         | 0000Н             | 23FFH       |  |  |  |  |  |  |  |  |
| STC11F56XE/STC11L56XE                                          | 5K           | 10         | 0000Н             | 13FFH       |  |  |  |  |  |  |  |  |
| STC11F60XE/STC11L60XE                                          | 1K           | 2          | 0000Н             | 3FFH        |  |  |  |  |  |  |  |  |
| STC10Fxx / STC10Lxx seri                                       | es MCU inter | nal EEPROM | I Selection Table |             |  |  |  |  |  |  |  |  |
| Truno                                                          | EEPROM       | Sector     | Begin_Sector      | End_Sector  |  |  |  |  |  |  |  |  |
| Type                                                           | (Byte)       | Numbers    | Begin_Address     | Ene_Address |  |  |  |  |  |  |  |  |
| STC10F02XE/STC10L02XE                                          | 5K           | 10         | 0000H             | 13FFH       |  |  |  |  |  |  |  |  |
| STC10F04XE/STC10L04XE                                          | 5K           | 10         | 0000H             | 13FFH       |  |  |  |  |  |  |  |  |
| STC10F06XE/STC10L06XE                                          | 5K           | 10         | 0000H             | 13FFH       |  |  |  |  |  |  |  |  |
| STC10F08XE/STC10L08XE                                          | 5K           | 10         | 0000Н             | 13FFH       |  |  |  |  |  |  |  |  |
| STC10F10XE/STC10L10XE                                          | 3K           | 6          | 0000Н             | 0BFFH       |  |  |  |  |  |  |  |  |
| STC10F12XE/STC10L12XE                                          | 1K           | 2          | 0000Н             | 3FFH        |  |  |  |  |  |  |  |  |

**Chapter 10 STC10/11 xx series Selection Table** 

| Chapter                | TO DI C.                    | 10/1          | 1 /1/                   | × 5'                  |                  | - B - B - C        |         | 110         |                                   | ioic                                    |                                                                   |                                                                         |                                                            |      |                                              |
|------------------------|-----------------------------|---------------|-------------------------|-----------------------|------------------|--------------------|---------|-------------|-----------------------------------|-----------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------|------|----------------------------------------------|
| Type<br>1T 8051<br>MCU | Operating<br>voltage<br>(V) | F 1 a s h (B) | S<br>A<br>R<br>M<br>(B) | T<br>I<br>M<br>E<br>R | U<br>A<br>R<br>T | PCA/<br>PWM<br>D/A | A/<br>D | W<br>D<br>T | E<br>E<br>P<br>R<br>O<br>M<br>(B) | Internal<br>low<br>voltage<br>interrupt | Internal<br>Reset<br>threshold<br>voltage<br>can be<br>configured | External<br>interrupts<br>which<br>can wake<br>up power<br>down<br>mode | Special<br>timer<br>for<br>waking<br>power<br>down<br>mode |      | Package<br>of<br>44-pin<br>(40 I/O<br>ports) |
| STC10F04               | 5.5~3.3                     | 4K            | 256                     | 2                     | 1-2              | N                  | N       | Y           | N                                 | Y                                       | Y                                                                 | 5                                                                       | N                                                          | PDIP | LQFP/<br>PLCC                                |
| STC10F04XE             | 5.5~3.3                     | 4K            | 512                     | 2                     | 1-2              | N                  | N       | Y           | 5K                                | Y                                       | Y                                                                 | 5                                                                       | N                                                          | PDIP | LQFP/<br>PLCC                                |
| STC10F06               | 5.5~3.3                     | 6K            | 256                     | 2                     | 1-2              | N                  | N       | Y           | N                                 | Y                                       | Y                                                                 | 5                                                                       | N                                                          | PDIP | LQFP/<br>PLCC                                |
| STC10F06XE             | 5.5~3.3                     | 6K            | 512                     | 2                     | 1-2              | N                  | N       | Y           | 5K                                | Y                                       | Y                                                                 | 5                                                                       | N                                                          | PDIP | LQFP/<br>PLCC                                |
| STC10F08               | 5.5~3.3                     | 8K            | 256                     | 2                     | 1-2              | N                  | N       | Y           | N                                 | Y                                       | Y                                                                 | 5                                                                       | N                                                          | PDIP | LQFP/<br>PLCC                                |
| STC10F08XE             | 5.5~3.3                     | 8K            | 512                     | 2                     | 1-2              | N                  | N       | Y           | 5K                                | Y                                       | Y                                                                 | 5                                                                       | N                                                          | PDIP | LQFP/<br>PLCC                                |
| STC10F10               | 5.5~3.3                     | 10K           | 256                     | 2                     | 1-2              | N                  | N       | Y           | N                                 | Y                                       | Y                                                                 | 5                                                                       | N                                                          | PDIP | LQFP/<br>PLCC                                |
| STC10F10XE             | 5.5~3.3                     | 10K           | 512                     | 2                     | 1-2              | N                  | N       | Y           | 3K                                | Y                                       | Y                                                                 | 5                                                                       | N                                                          | PDIP | LQFP/<br>PLCC                                |
| STC10F12               | 5.5~3.3                     | 12K           | 256                     | 2                     | 1-2              | N                  | N       | Y           | N                                 | Y                                       | Y                                                                 | 5                                                                       | N                                                          | PDIP | LQFP/<br>PLCC                                |
| STC10F12XE             | 5.5~3.3                     | 12K           | 512                     | 2                     | 1-2              | N                  | N       | Y           | 1K                                | Y                                       | Y                                                                 | 5                                                                       | N                                                          | PDIP | LQFP/<br>PLCC                                |
| STC10F14X              | 5.5~3.7                     | 14K           | 512                     | 2                     | 1-2              | N                  | N       | Y           | IAP                               | Y                                       | Y                                                                 | 5                                                                       | N                                                          | PDIP | LQFP/<br>PLCC                                |
| STC10L04               | 3.6~2.1                     | 4K            | 256                     | 2                     | 1-2              | N                  | N       | Y           | N                                 | Y                                       | Y                                                                 | 5                                                                       | N                                                          | PDIP | LQFP/<br>PLCC                                |
| STC10L04XE             | 3.6~2.1                     | 4K            | 512                     | 2                     | 1-2              | N                  | N       | Y           | 5K                                | Y                                       | Y                                                                 | 5                                                                       | N                                                          | PDIP | LQFP/<br>PLCC                                |
| STC10L06               | 3.6~2.1                     | 6K            | 256                     | 2                     | 1-2              | N                  | N       | Y           | N                                 | Y                                       | Y                                                                 | 5                                                                       | N                                                          | PDIP | LQFP/<br>PLCC                                |
| STC10L06XE             | 3.6~2.1                     | 6K            | 512                     | 2                     | 1-2              | N                  | N       | Y           | 5K                                | Y                                       | Y                                                                 | 5                                                                       | N                                                          | PDIP | LQFP/<br>PLCC                                |
| STC10L08               | 3.6~2.1                     | 8K            | 256                     | 2                     | 1-2              | N                  | N       | Y           | N                                 | Y                                       | Y                                                                 | 5                                                                       | N                                                          | PDIP | LQFP/<br>PLCC                                |
| STC10L08XE             | 3.6~2.1                     | 8K            | 512                     | 2                     | 1-2              | N                  | N       | Y           | 5K                                | Y                                       | Y                                                                 | 5                                                                       | N                                                          | PDIP | LQFP/<br>PLCC                                |
| STC10L10               | 3.6~2.1                     | 10K           | 256                     | 2                     | 1-2              | N                  | N       | Y           | N                                 | Y                                       | Y                                                                 | 5                                                                       | N                                                          | PDIP | LQFP/<br>PLCC                                |
| STC10F10XE             | 3.6~2.1                     | 10K           | 512                     | 2                     | 1-2              | N                  | N       | Y           | 3K                                | Y                                       | Y                                                                 | 5                                                                       | N                                                          | PDIP | LQFP/<br>PLCC                                |
| STC10L12               | 3.6~2.1                     | 12K           | 256                     | 2                     | 1-2              | N                  | N       | Y           | N                                 | Y                                       | Y                                                                 | 5                                                                       | N                                                          | PDIP | LQFP/<br>PLCC                                |
| STC10L12XE             | 3.6~2.1                     | 12K           | 512                     | 2                     | 1-2              | N                  | N       | Y           | 1K                                | Y                                       | Y                                                                 | 5                                                                       | N                                                          | PDIP | LQFP/<br>PLCC                                |
| STC10L14X              | 3.6~2.4                     | 14K           | 512                     | 2                     | 1-2              | N                  | N       | Y           | IAP                               | Y                                       | Y                                                                 | 5                                                                       | N                                                          | PDIP | LQFP/<br>PLCC                                |

| Type<br>1T 8051<br>MCU | Operating voltage (V) | F 1 a s h (B) | S<br>A<br>R<br>M<br>(B) | T<br>I<br>M<br>E<br>R | U<br>A<br>R<br>T | PCA/<br>PWM<br>D/A | A/<br>D | W<br>D<br>T | E<br>E<br>P<br>R<br>O<br>M | Internal<br>low<br>voltage<br>interrupt | Internal<br>Reset<br>threshold<br>voltage<br>can be<br>configured | External<br>interrupts<br>which<br>can wake<br>up power<br>down<br>mode | Special<br>timer for<br>waking<br>power<br>down<br>mode | Package<br>of<br>40-pin<br>(36 I/O<br>ports) | Package<br>of<br>44-pin<br>(40 I/O<br>ports) |
|------------------------|-----------------------|---------------|-------------------------|-----------------------|------------------|--------------------|---------|-------------|----------------------------|-----------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------|----------------------------------------------|
| STC11F16XE             | 5.5~3.7               | 16K           | 1280                    | 2                     | 1-2              | N                  | N       | Y           | 45K                        | Y                                       | Y                                                                 | 5                                                                       | Y                                                       | PDIP                                         | LQFP/<br>PLCC                                |
| STC11F32XE             | 5.5~3.7               | 32K           | 1280                    | 2                     | 1-2              | N                  | N       | Y           | 29K                        | Y                                       | Y                                                                 | 5                                                                       | Y                                                       | PDIP                                         | LQFP/<br>PLCC                                |
| STC11F40XE             | 5.5~3.7               | 40K           | 1280                    | 2                     | 1-2              | N                  | N       | Y           | 21K                        | Y                                       | Y                                                                 | 5                                                                       | Y                                                       | PDIP                                         | LQFP/<br>PLCC                                |
| STC11F48XE             | 5.5~3.7               | 48K           | 1280                    | 2                     | 1-2              | N                  | N       | Y           | 13K                        | Y                                       | Y                                                                 | 5                                                                       | Y                                                       | PDIP                                         | LQFP/<br>PLCC                                |
| STC11F52XE             | 5.5~3.7               | 52K           | 1280                    | 2                     | 1-2              | N                  | N       | Y           | 9K                         | Y                                       | Y                                                                 | 5                                                                       | Y                                                       | PDIP                                         | LQFP/<br>PLCC                                |
| STC11F56XE             | 5.5~3.7               | 56K           | 1280                    | 2                     | 1-2              | N                  | N       | Y           | 5K                         | Y                                       | Y                                                                 | 5                                                                       | Y                                                       | PDIP                                         | LQFP/<br>PLCC                                |
| STC11F60XE             | 5.5~3.7               | 60K           | 1280                    | 2                     | 1-2              | N                  | N       | Y           | 1K                         | Y                                       | Y                                                                 | 5                                                                       | Y                                                       | PDIP                                         | LQFP/<br>PLCC                                |
| IAP11F62XE             | 5.5~4.1               | 62K           | 1280                    | 2                     | 1-2              | N                  | N       | Y           | IAP                        | Y                                       | Y                                                                 | 5                                                                       | Y                                                       | PDIP                                         | LQFP/<br>PLCC                                |
| STC11F08XE             | 5.5~3.7               | 8K            | 1280                    | 2                     | 1-2              | N                  | N       | Y           | 53K                        | Y                                       | Y                                                                 | 5                                                                       | Y                                                       | PDIP                                         | LQFP/<br>PLCC                                |
| STC11L16XE             | 3.6~2.1               | 16K           | 1280                    | 2                     | 1-2              | N                  | N       | Y           | 45K                        | Y                                       | Y                                                                 | 5                                                                       | Y                                                       | PDIP                                         | LQFP/<br>PLCC                                |
| STC11L32XE             | 3.6~2.1               | 32K           | 1280                    | 2                     | 1-2              | N                  | N       | Y           | 29K                        | Y                                       | Y                                                                 | 5                                                                       | Y                                                       | PDIP                                         | LQFP/<br>PLCC                                |
| STC11L40XE             | 3.6~2.1               | 40K           | 1280                    | 2                     | 1-2              | N                  | N       | Y           | 21K                        | Y                                       | Y                                                                 | 5                                                                       | Y                                                       | PDIP                                         | LQFP/<br>PLCC                                |
| STC11L48XE             | 3.6~2.1               | 48K           | 1280                    | 2                     | 1-2              | N                  | N       | Y           | 13K                        | Y                                       | Y                                                                 | 5                                                                       | Y                                                       | PDIP                                         | LQFP/<br>PLCC                                |
| STC11L52XE             | 3.6~2.1               | 52K           | 1280                    | 2                     | 1-2              | N                  | N       | Y           | 9K                         | Y                                       | Y                                                                 | 5                                                                       | Y                                                       | PDIP                                         | LQFP/<br>PLCC                                |
| STC11L56XE             | 3.6~2.1               | 56K           | 1280                    | 2                     | 1-2              | N                  | N       | Y           | 5K                         | Y                                       | Y                                                                 | 5                                                                       | Y                                                       | PDIP                                         | LQFP/<br>PLCC                                |
| STC11L60XE             | 3.6~2.1               | 60K           | 1280                    | 2                     | 1-2              | N                  | N       | Y           | 1K                         | Y                                       | Y                                                                 | 5                                                                       | Y                                                       | PDIP                                         | LQFP/<br>PLCC                                |
| IAP11L62XE             | 3.6~2.4               | 62K           | 1280                    | 2                     | 1-2              | N                  | N       | Y           | IAP                        | Y                                       | Y                                                                 | 5                                                                       | Y                                                       | PDIP                                         | LQFP/<br>PLCC                                |
| STC11L08XE             | 3.6~2.1               | 8K            | 1280                    | 2                     | 1-2              | N                  | N       | Y           | 53K                        | Y                                       | Y                                                                 | 5                                                                       | Y                                                       | PDIP                                         | LQFP/<br>PLCC                                |